






### Disclaimer

The information contained herein represents the experience and opinions of the presenters. It does not represent an official position or recommendation of the SNubber Users Group (SNUG) and is intended for informational use.

Information pertaining to ASME codes or regulatory positions is presented for historical purposes and any use or interpretations should be verified through those organizations utilizing their approved processes.

# Speaker Introductions

# Steve Norman

### Steve Norman

- 12 Years with Fluor-Daniel at Farley
  - Piping / Instrument Engineer in construction
  - Maintenance Engineer in production
- 19 Years with Southern Nuclear at Farley
  - Maintenance Specialist
- Snubber Program Owner at Farley for 21 years
- Current Chair of OM Subcommittee ISTD
- Current Chair of QME Subcommittee QDR
- Current member of ASME Standards Committees for both Section XI (ISI) & OM (IST) as well as current Chair of Standards Committee QME (Qualification)
- Current Member of ASME Board of Nuclear Codes and Standards (BNCS)
- 2 ½ Years as Welding Engineer at Fort Calhoun
- 1 ½ Years as Pressure Test Coordinator at Palo Verde
- Previously with Altran Solutions
- Previously with Sargent & Lundy
- Currently employed by Enercon Services, Inc., assigned to Vogtle 3 & 4 as IST & Snubber Programs Engineer

### **General Info**



We will be going through material quickly



Questions are welcome, but in the interest of time, some may be deferred to conference Question & Answer times if time is not available during or after seminar

# Purpose of Seminar

- Industry Personnel Turnover Results In
  - Lack of Program Continuity and Consistency
  - Loss of Knowledge and History
  - Loss of "Big Picture" as Focus Shifts to Implementing Established Tasks
- SNUG Board of Directors Approved Seminar(s) to Address These and Other Issues

# History of SNUG

- First Meeting December 6, 1984
  - St. Petersburg, Florida
  - 26 Attendees
  - Generic Issue 113
- Incorporated in 1998
- Annual Winter Working Conference from 1984 until 2020
- Annual Summer Conference & Trade Show from 1985 (held virtually in 2020 & 2021)
- Annual Business Meeting at Summer Conference since 1999

### Past Issues

- Generic Issue 113 (NUREG/CR-5416)
- Generic Letter 90-09 Input
- Addressed Information Notices, Bulletins, etc.
  - IN 89-30
  - IN 94-48
- Input to LCO 3.0.8 development

### SNUG Documents Available

- White Papers
- Working Group Reports
- Letters
- Other Documents

## White Papers

- Alternate Visual Examinations
- End Attachment Gaps
- Vibration and Fretting Corrosion
- Drag Testing of Mechanical Snubbers
- Beyond Design Basis Events

### Disclaimer with each White Paper:

THIS DOCUMENT HAS BEEN DEVELOPED BY THE SNUBBER USERS GROUP (SNUG) FOR USE BY ITS MEMBERSHIP. THIS INFORMATION IS REPRESENTATIVE OF THE GENERAL CONSENSUS OF THE SNUG, BUT MAY NOT REPRESENT THE OPINIONS OF ALL OF THE SNUG MEMBERSHIP. NO PART OF THIS DOCUMENT SHOULD BE CONSIDERED AS MANDATORY POLICY THAT MUST BE ADHERED TO BY ANY SNUG MEMBER.

### Other Documents

- Lubrication Working Group Report
- Program Document Template
- Program Assessment Guide (workshop provided on use of guide)
- Letter to NRC Reply to IN 94-48

### **Manuals**

- Seal Life Manual
- Hydraulic Snubber Manual
- Mechanical Snubber Manual

# Seminar Objectives

- Focus on 'Big Picture"
  - Primarily Addresses Generic Program Scope and Basis Issues
  - Snubber Specific Technical Issues to be Addressed in More Specific Seminars
- Provide History of Program Requirements
  - Evolution of Requirements
  - Basis of Original Requirements
- Provide Overview of Current Program Requirements
  - Outline Current Requirements
  - Governing Documents / Licensing Basis for Current Requirements
    - Compare / Contrast Various Basis Requirements
    - Interaction of Codes & Regulations

- Plants built in the 1960's and early 1970's had no testing,
   examination or service life monitoring requirements for snubbers.
- Snubber supports were treated the same as variable spring supports or constant load supports.
- Snubber supports were included in the ISI program along with all other types of supports.
- Most snubber populations were primarily hydraulic at that time and most hydraulics had external tubing.
- Snubbers began exhibiting problems associated with hydraulic fluid leaks, mostly occurring at tubing fittings or with lexan reservoirs cracking.

- First NRC requirements issued early to mid 1970's
  - Developed because of experiences with snubbers in service
    - Hydraulic snubber seals
    - Failure to lock-up
  - IEB 73-03: Defective Hydraulic Shock Suppressors and Restraints
  - IEB 73-04: Defective Bergen-Paterson Hydraulic Shock Absorbers
  - IEB 75-05: Operability of Category I Hydraulic Shock and Sway Suppressors
  - IEB 78-10: Bergen-Paterson Hydraulic Shock Suppressor Accumulator Spring Coils

- Early Technical Specifications
  - NUREG-371 Recommendations
    - Development of Technical Specification
    - Standard Review Plan (SRP) Revision
    - Regulatory Guides
  - 1980 Revision to Standard Tech Specs 3/4.7.9 (Snubbers)
  - 1981 Revision to SRP 3.9.3

# History of Snubber Examination & Testing Requirements (Cont.)

- Early Technical Specifications
  - Initial Tech Specs applied only to hydraulics
    - Included both visual examination and functional test requirements
    - 100% visuals at least once every 18 months
      - » As often as every month depending upon number of failures
      - » Every month if seal material is not proven
    - Testing applied to 50 Kip and smaller
      - » Lock-up, bleed, and FOM (In-service Drag) tests required
      - » 10 snubbers or 10% (smaller of two) each outage
      - » Supplemental samples of equal size tested for each failure

# Typical Snubber Tech Spec Visual Table from 1980's

#### SURVEILLANCE REQUIREMENTS

4.7.9 Each snubber shall be demonstrated OPERABLE by performance of the following augmented inservice inspection program and the requirements of Specification 4.0.5.

#### a. <u>Visual Inspections</u>

The first inservice visual inspection of snubbers shall be performed after four months but within 10 months of POWER OPERATION and shall include all snubbers within the scope of Specification 3.7.9. If less than two (2) snubbers are found inoperable during the first inservice visual inspection, the second inservice visual inspection shall be performed 12 months ± 25% from the date of the first inspection. Otherwise, subsequent visual inspections shall be performed in accordance with the following schedule:

| No. Inoperable Snubbers<br>per Inspection Period | Subsequent Visual Inspection Period*# |
|--------------------------------------------------|---------------------------------------|
| 0                                                | 18 months ± 25%                       |
| 1                                                | 12 months ± 25%                       |
| 2                                                | 6 months ±25%                         |
| 3,4                                              | 124 days ± 25%                        |
| 5, 6, 7                                          | 62 days ± 25%                         |
| 8 or more                                        | 31 days ± 25%                         |

The snubbers may be categorized into two groups: Those accessible and those inaccessible during reactor operation. Each group may be inspected independently in accordance with the above schedule.

- NRC Revised Requirements
  - 1980, 1984 Generic Letters addressed revised Tech Spec requirements
    - Primarily formed basis for most "Original" Tech Specs (Pre-ITS)
    - All sizes included
    - Categorization of snubbers by design
    - In-service drag test requirements for hydraulic snubbers removed
    - Various sample plans offered
  - Generic Letter 80-99 revised TS and added requirements for mechanical snubbers
    - Activation and drag tests required
    - Freedom of Motion Tests
  - 1981 IE 81-01 addressed "frozen" INS mechanical snubbers
  - Generic Letter 84-13 eliminated snubber <u>list</u> from Tech Specs

# Typical Tech Spec Snubber List

#### **TABLE 3.7-4a**

#### SAFETY RELATED HYDRAULIC SNUBBERS\*

| SNUBBER NO. | SYSTEM SNUBBER INSTALLED ON, LOCATION AND ELEVATION          | ACCESSIBLE OR INACCESSIBLE (A or I) | HIGH RADIATION  ZONE DURING SHUTDOWN**  (Yes or No) | ESPECIALLY DIFFICULT TO REMOVE (Yes or No) |
|-------------|--------------------------------------------------------------|-------------------------------------|-----------------------------------------------------|--------------------------------------------|
|             |                                                              |                                     |                                                     |                                            |
| 2MS-R534    | Aux. Bldg., El. 179'-7-3/16"<br>Col. Lines T15 & T16 TA & TA | · А                                 | No                                                  | Yes                                        |
| 2MS-R532#   | Aux. Bldg., El. 155'-7-3/8"<br>Col. Lines TA & A 31 & 34     | Α                                   | No                                                  | Yes                                        |
| 2MS-R533    | Aux. Bldg., El. 155'-7-3/8"<br>Col. Lines TA & A 31 & 34     | Α                                   | No                                                  | Yes                                        |
| •           |                                                              |                                     |                                                     |                                            |
| 2MS-R517    | Aux. Bldg., El. 130'-2"<br>Col. Lines C & D 34 & 36          | Α                                   | Мо                                                  | Yes                                        |
| 2MS-R516#   | Aux. Bldg., El. 130'-2"<br>Col. Lines C & D 34 & 36          | Α                                   | No                                                  | Yes                                        |
| 2MS-R503#   | Aux. Bldg., El. 130'-2"<br>Col. Lines C & D 31 & 34          | A                                   | No                                                  | Yes                                        |
| 2MS-R505    | Aux. Bldg., El. 130'-2"<br>Col. Lines C & D 31 & 34          | Α                                   | No                                                  | Yes                                        |
| 2MS-R510    | Aux. Bldg., El. 130'-2"<br>Col. Lines C & D 31 & 34          | A                                   | Ņo                                                  | Yes                                        |
| 2MS-R522    | Aux. Bldg., El. 147'-0-11/16"<br>Col. Lines A & B 31 & 34    | Α                                   | No                                                  | Yes                                        |

### **Snubber List Commitment**

SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION

RELATED TO AMENDMENT NO. 55 TO FACILITY OPERATING LICENSE NO. NPF-2

AND AMENDMENT NO. 46 TO FACILITY OPERATING LICENSE NO. NPF-8

ALABAMA POWER COMPANY

JOSEPH M. FARLEY NUCLEAR PLANT, UNIT NOS. 1 AND 2

DOCKET NOS. 50-348 AND 50-364

#### Introduction

Alabama Power Company (APCo) by letter dated July 6, 1984, requested amendments to the Farley Units 1 and 2 Technical Specifications (TSs). The proposed amendments consist of revisions to the snubber Technical Specifications (Section 3/4.7.9) pursuant to NRC Generic Letter 84-13 and miscellaneous administrative changes to other sections of the Technical Specifications. Our evaluation follows.

#### Evaluation

The licensee proposed to delete Tables 3.7-4a and 3.7-4b from the Units 1 and 2 Technical Specifications. Deletion of these tables, which list safety-related snubbers, will eliminate the need for frequent TS amendments to incorporate changes in the snubber listings. This change is in accordance with guidance issued to all licensees in NRC Generic Letter 84-13, dated May 3, 1984, Subject: Technical Specification for Snubber (Generic Letter 84-13). The licensee will maintain the listing of safety-related snubbers in the plant surveillance procedures. Changes to these lists are subject to the provisions of 10 CFR 50.59.

- Section XI
  - 1978 ASME Section XI IWF-5000 introduced (Winter addenda)
    - Small bore only (< 50 kips)</li>
    - 10% testing only, representative
    - Rotate through population
  - 1982 NRC Rulemaking endorsed Section XI for first time
  - 1987 Addenda
    - added reference to OM Part 4 (in preparation)
    - Added examinations (referenced VT-3, IWA-2213)
    - Added attachments
    - Dropped size limit
    - Removed test and sample details
  - 1989 Incorporated dates (OM-1987 published in 1988)
  - 1992 Removed OM publication dates
  - 2006 Addenda deleted snubbers from ISI

### Section XI Article IWF

# SUBSECTION IWF REQUIREMENTS FOR CLASS 1, 2, 3, AND MC COMPONENT SUPPORTS OF LIGHT-WATER-COOLED PLANTS

#### ARTICLE IWF-1000 SCOPE AND RESPONSIBILITY

#### IWF-1100 SCOPE

This Subsection provides the requirements for inservice inspection of Class 1, 2, 3, and MC component supports.

#### IWF-1200 COMPONENT SUPPORTS SUBJECT TO EXAMINATION AND TEST

#### **IWF-1210 EXAMINATION REQUIREMENTS**

The examination requirements shall apply to the following:

(a) piping supports

(b) supports other than piping supports

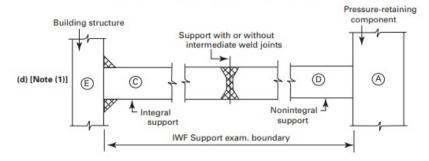
#### IWF-1220 SNUBBER INSPECTION REQUIREMENTS<sup>40</sup>

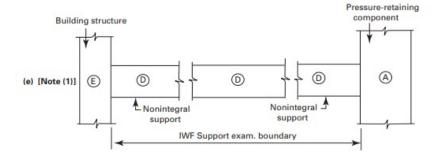
The inservice inspection requirements for snubbers are outside the scope of this Division.

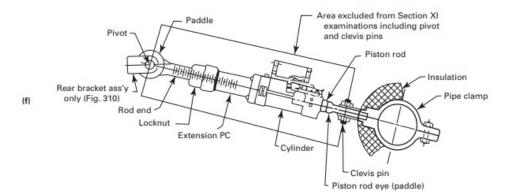
#### IWF-1230 SUPPORTS EXEMPT FROM EXAMINATION

Supports exempt from the examination requirements of Article IWF-2000 are those connected to piping and other items exempted from volumetric, surface, or VT-1 or VT-3 or general visual examination by IWB-1220(a) through IWB-1220(c); IWC-1221, IWC-1222; IWD-1220(a) through IWD-1220(d); and IWE-1220(a), IWE-1220(c), and IWE-1220(d). In addition, portions of supports that are inaccessible by being encased in

concrete, buried underground, or encapsulated by guard pipe are also exempt from the examination requirements of Article IWF-2000.


#### IWF-1300 SUPPORT EXAMINATION BOUNDARIES


The support examination boundaries for both integral and nonintegral supports are shown in Figure IWF-1300-1. The following definitions apply.


- (a) The boundary of an integral support (B) connected to a pressure-retaining component (A) is the distance from the pressure-retaining component (A) as indicated in Subsection IWB, Subsection IWC, Subsection IWD, and Subsection IWE.
- (b) The boundary of an integral support (C) connected to a building structure (E) is the surface of the building structure.
- (c) The boundary of a nonintegral support (D) connected to a pressure-retaining component (A) is the contact surface between the component and the support.
- (d) The boundary of a nonintegral support (D) connected to a building structure (E) is the surface of the building structure.
- (e) Where the mechanical connection of a nonintegral support is buried within the component insulation, the support boundary may extend from the surface of the component insulation, provided the support is under continuous tension or compression load.

# Section XI Figure IWF-1300-1

Figure IWF-1300-1
Illustrations of Typical Support Examination Boundaries (Cont'd)







- ASME OM-4 / ISTD
  - Working Group formed in late 1970's
  - Tasked to develop pre-service and in-service snubber examination requirements (OM Part 4)
  - OM Part 4 issued as Oma-1988 addenda to 1987 OM Code
  - Eventually became Subsection ISTD of OM-1990
  - Two Test Plans
    - 10% Plan
    - 37 Plan

- Improved Technical Specifications
  - Improved Tech Specs (ITS) mid late 90's
  - Relocated snubbers to Owner Controlled Documents (TRMs)
  - Requirements unchanged (cut & paste from Tech Spec to Owner Controlled Document)
  - Changes per 10CFR50.59 possible
  - LCO for snubbers was lost for most sites

Comparison of Early Tech Specs / Later Tech Specs / Section XI / OM Code The tables on the following slides will provide a comparison of the following topics over several program guidance documents:

- Scope
- Examination Boundary
- Personnel Certifications
- Test Plans
- Failure Mode Grouping
- Drag Testing
- Service Life Monitoring

# **Scope Comparisons**

| Early TS<br>(1980)                             | Later TS<br>(TRMs)<br>(1994)                                | Section XI<br>IWF<br>(1978-<br>1987a)                                 | Section XI<br>IWF<br>(1987a-2006)                                  | OM-4<br>(1988)                    | ISTD<br>(ISTA)<br>(1990)                                                   |
|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|
| All Safety<br>Related<br>Hydraulic<br>Snubbers | All Safety Related Snubbers + Snubbers Affecting SR Systems | Class 1, 2, 3, & MC Snubbers with Load ratings < 50 kips Testing Only | Class 1, 2,<br>3, & MC<br>Snubbers<br><u>Added</u><br>Examinations | All Safety<br>Related<br>Snubbers | RC Pressure Boundary, Achieve or Maintain Safe Shutdown, Mitigate Accident |

# **Boundary Comparisons**

| Early TS (1980)                  | Later TS<br>(TRMs)               | Section<br>XI                    | Section<br>XI     | Section<br>XI                        | OM-4<br>(1988)                   | ISTD<br>(1990) |
|----------------------------------|----------------------------------|----------------------------------|-------------------|--------------------------------------|----------------------------------|----------------|
| ,                                | (1994)                           | IWF                              | IWF               | IWF                                  | ,                                | ,              |
|                                  |                                  | (1978-<br>1987a)                 | (1987a-<br>2006)  | (2006)                               |                                  |                |
| Pipe to<br>Building<br>Structure | Pipe to<br>Building<br>Structure | Pipe to<br>Building<br>Structure | Refers to<br>OM-4 | Excludes<br>snubber<br>Pin to<br>Pin | Pipe to<br>Building<br>Structure | Pin to<br>Pin  |

# **Certification Comparisons**

| Early TS (1980) | Later TS<br>(TRMs)<br>(1994) | Section XI<br>IWF<br>(1987a) | OM-4<br>(1988)          | ISTD<br>(1990)         |
|-----------------|------------------------------|------------------------------|-------------------------|------------------------|
| None            | None                         | VT-3<br>Method<br>required   | Per<br>Owner's<br>Reqs. | Per<br>Owner's<br>Reqs |

# **Test Plan Comparisons**

| Early TS<br>(1980)  | Later TS<br>(TRMs)<br>(1994)                | Section XI<br>IWF<br>(1978a) | Section XI<br>IWF<br>(1987)                       | OM-4<br>(1988)              | ISTD<br>(1990)             |
|---------------------|---------------------------------------------|------------------------------|---------------------------------------------------|-----------------------------|----------------------------|
| 10% or 10<br>No FMG | 10%, 37<br>(others,<br>88,55,etc)<br>No FMG | 10%<br>No FMG                | Refers to OM-4  (pointer removed in 2006 Addenda) | 10%, 37<br>Mandatory<br>FMG | 10%, 37<br>Optional<br>FMG |

# **Drag Test Comparisons**

| Early TS<br>(1980)     | Later TS<br>(TRMs)<br>(1994) | Section XI<br>(1978a)  | Section<br>XI (1987)                       | OM-4<br>(1988)         | ISTD<br>(1990) |
|------------------------|------------------------------|------------------------|--------------------------------------------|------------------------|----------------|
| Hyd.                   | Mech.                        | Hyd.&Mech              | Refers to<br>OM-4                          | Mech.                  | Mech.          |
| Breakaway<br>& Running | Breakaway<br>& Running       | Breakaway<br>& Running | (pointer<br>removed<br>in 2006<br>Addenda) | Breakaway<br>& Running | Running        |

# Service Life Comparisons

| Early TS<br>(1980) | Later TS<br>(TRMs)<br>(1994) | Section XI<br>(< 1987) | Section XI<br>(1987)                              | OM-4<br>(1988) | ISTD<br>(1990) |
|--------------------|------------------------------|------------------------|---------------------------------------------------|----------------|----------------|
| None               | Yes                          | None                   | Refers to OM-4  (pointer removed in 2006 Addenda) | None           | Yes            |

### **Current Requirements**

- General Program Requirements Today
  - Visual Examination
  - Functional Testing
  - Service Life Monitoring
  - Documentation
    - Maintain Listing of Snubbers
    - Maintain Service Life data
    - Design/Licensing Basis of Program (site specific)
    - Implementation (actions taken)
  - NUREG 1482 addresses Program requirements

### **Current Requirements**

- Applicable Site-Specific Licensing Basis for Requirements
  - Technical Specifications (in some cases LCOs only)
  - Owner Controlled Documents (TRMs)
  - Section XI (Prior to 2006 addenda)
  - OM-4 (none currently)
  - ISTD
  - Relief Requests
- Reconciliation of Multiple Basis Documents
  - Must define <u>ALL</u> governing requirements for the Program
  - If Tech Specs/TRM do not match the governing Code then both sets of requirements must be satisfied
  - If applicable, Section XI requirements <u>must</u> be met unless relief is granted

# Current Requirements (cont.)

- Recent & Future Changes
  - Section XI Article IWF-5000 Deleted in 2006 Addenda
  - Subsequent to 2006a all Snubber In-Service Requirements to be in accordance with OM ISTD
  - NRC rulemaking requires ISTD if using SC XI 2006 addenda or later
  - Any exception requires an approved Relief Request
  - Must update TS/TRM/Commitments/Procedures to incorporate or reference OM ISTA and ISTD.

## Historic Reference Documents

- There are many historical documents that drove the evolution of snubber examination, testing, and service life requirements to current practices.
- NRC, manufacturers, INPO, EPRI, etc.
- Some provide good background information; others simply show the early industry lack of understanding.
- Many are readily available, others not so much.
- The list provided is not all inclusive but meant to convey the long history and depth of input that got us where we are today – both the good and the bad.

## NRC Generic Letters & Bulletins

#### **Generic Letters**

- GL 80-99, Surveillance Requirements for Mechanical Snubbers
- GL-84-13, Technical Specification For Snubbers
- GL-89-09, ASME Section III Component Replacements
- GL 90-09, Visual Inspection Frequency
- GL 91-18, Operability Guidelines

#### **Bulletins**

- B73-03, Defective Hydraulic Shock Suppressors
- B73-04, Defective Bergen Paterson Hydraulic Shock Suppressors
- B75-05, Operability of Hydraulic Shock Suppressors
- B78-10, Bergen-Paterson Hydraulic Shock Suppressor Accumulator Spring Coils
- B79-02, Pipe Support Anchor Bolts
- B79-14, Configuration Verification
- B81-01, Failures/Surveillance of Mechanical Snubbers

## **NRC Information Notices**

- N79-01, Bergen-Paterson Hydraulic Shock Arrestors
- N79-05, Improper Materials in Safety Related Components
- N80-42, Radiation Effects on Hydraulic Snubber Fluid
- N82-12, Failure/Surveillance of Hydraulic Snubbers
- N83-13, Misapplication of Bergen-Paterson Clamp
- N83-20, ITT-G Fig. 306/307 Mechanical Snubber Attachment Interference
- N83-47, Failure of Hydraulic Snubbers
- N84-67, Recent Snubber Testing High Failure Rate
- N84-73, Down Rating of Self Aligning Ball Bushings
- N86-102, Repeated Multiple Failures of SG Snubbers
- N88-95, Inadequate Validation of Procured Parts for Anchor/Darling Mechanical Snubbers

## **NRC Information Notices**

- N89-30, High Temperature Environment
- N94-48, High Temperature Environment
- N95-09, Use of Inappropriate Guidelines/Criteria for Operability Evaluations of Pipe and Supports
- N97-16, Pre-conditioning of Components Prior to IST
- N97-71, Inappropriate Use of 50.59 Regarding Reduced Seismic Criteria for Temporary Conditions

## NRC RIS & EGM

RIS 2010-06, Inservice Inspection and Testing Requirements of

Dynamic Restraints (Snubbers)

EGM 10-001, Enforcement Guidance Memorandum, Dispositioning

Violations for Inservice Examination and Testing

Requirements for Dynamic Restraints (Snubbers)

## **NRC Circulars**

- C76-05, Bleed and Lock-up Velocities on ITT-Grinnell Figure 200 and 201 Hydraulic Shock Suppressors
- C78-07, Damaged Components of Bergen-Paterson Series 25000 Test Stand
- C79-25, Bergen-Paterson Shock Arrestor Strut Assembly Interference
- C81-05, Self-Aligning Rod End Bushings for Pipe Supports

## **NRC NUREGS**

- NUREG-371
- NUREG-933
- **NUREG-1482**
- CR-2175, Snubber Sensitivity Study
- CR-2032, Single Vs. Dual Snubber Installations
- CR-2136, Effects of Postulated Event Devices on Normal Operation of Piping Systems in Nuclear Power Plants
- CR-4279, Aging and Service Wear of Hydraulic and Mechanical Snubbers Used on Safety-Related Piping and Components of Nuclear Power Plants
- CR-5386, Basis for Snubber Aging Research
- CR-5416, Generic Issue 113, Dynamic Qualification and Testing of Large Bore Hydraulic Snubbers
- CR-5646, Piping System Response During High Level Simulated Seismic test at the Heissdampfreaktor Facility (SHAM Test Facility)
- CR-5870, Results of LWR Snubber Aging Research
- CR-6027, Evaluation of Snubber Single Failures

## **EPRI Documents**

| NP-2297    | Snubber Reliability Improvement Study                            |
|------------|------------------------------------------------------------------|
| NP-5854    | Assessing the Costs, Risks, and Benefits of Snubber Reduction:   |
|            | A Comprehensive Framework (June 1988).                           |
| NP-6443    | Improved Criteria for Snubber Functional Testing, July 1989.     |
| NSAC-104   | Guidelines for Reducing Snubbers on Nuclear Piping Systems       |
| TR-1010968 | Tier 2, Volume 1, Guidelines and Criteria for Nuclear Piping and |
|            | Support Evaluation and Design, Integration of Methods and        |
|            | Guidelines to Evaluate Nuclear Piping and Pipe Support Design    |
|            | and Operability Issues. (Not NRC endorsed)                       |
| TR-1010968 | Tier 2, Volume 4, Guidelines and Criteria for Nuclear Piping and |
|            | Support Evaluation and Design, Behavior and Failure Mode of      |
|            | Standard Pipe Supports Beyond Their Design Conditions            |
| TR-102363  | Tier 1 & 2, Evaluation of Snubber Functional Test Methods.       |
| TR-6270-1  | Snubber Reduction Program (October 1985)                         |

## **INPO Documents**

86-014, Good Practice MA-313, "Snubber Maintenance Program" (never formally approved)

OMRs (Operations and Maintenance Reminders)

- OMR-19, Grinnell Snubber Orientation
- OMR-20, Corroded INS Mechanical Snubbers
- OMR-38, Grinnell Snubber Orientation
- OMR-83, ITT Grinnell Hydraulic Snubbers
- OMR-115, Steam Generator Snubber Failures
- OMR-146, Failure of PSA Mechanical Snubbers
- OMR-223, Waterhammer in RHR System Damages Snubber
- OMR-310, Aux. Feedwater Pump Trip

#### SERs (Significant Event Reports)

- SER22-81, Corrosion Failure of Mechanical Snubbers
- SER54-81, ECCS Piping Damaged
- SER90-81, High Occurrence of Degraded Hydraulic Snubbers

## **Technical Reports**

Combustion Engineering Report 82-02, Installation of Grinnell Hydraulic Snubbers General Electric Report SIL021, Seals for Bergen-Paterson Hydraulic Shock Suppressors General Electric Report SIL021S1, Seals for Bergen-Paterson Hydraulic Shock Suppressors General Electric Report SIL021S2, Seals for Bergen-Paterson Hydraulic Shock Suppressors General Electric Report SIL021S3, Seals for Bergen-Paterson Hydraulic Shock Suppressors General Electric Report SIL021S4, Snubber Surveillance Program General Electric Report SIL021S5, Seals for Grinnell Hydraulic Shock Suppressors General Electric Report SIL070, Hydraulic Shock Suppressor Application General Electric Report SIL339, Mechanically Locked Snubbers





QUESTIONS?

**COMMENTS?** 





THANK YOU FOR YOUR TIME.

WE HOPE YOU HAVE LEARNED SOMETHING TODAY.

## MORNING BREAK SPONSORED BY



RETURN BY 10:30 AM



# Late Registration is Open Session will start at 10:30 AM

## PLEDGE OF ALLEGIANCE



Before we call the conference to order, please join us in the Pledge of Allegiance to the American Flag.





SNUBBER USERS GROUP

# SNUBBER USERS GROUP 2023 SUMMER CONFERENCE & TRADE SHOW

Call To Order
Mitch Etten-Bohm

## WELCOME!!



## Administrative Items & Announcements

- Safety
- Agenda Changes
- Forms in your booklet
- Question Cards/Benchmarking Cards
- SNUG Inc. Business Meeting
- Board Meeting after today's session to elect officers for 2023-2024
- Special Event Tonight

## MORNING AGENDA



## Agenda

- Welcome and Special Events Lisega
- Introductions
- Vendor Products and Services



## Welcome to Tucson, AZ!!

- Casino Del Sol
  - Over a dozen dining restaurants to choose from
  - Multiple bars
  - Casino
  - Let us know if there is anything you need
- Group Entertainment
  - Top Golf on Monday
  - Buses to leave at 5:30 PM
  - Food and golf from 6-9 PM



## Introductions

- Name
- Utility/Vendor
- Years with snubbers
- What do you want out of this conference?

## **Participating Vendors**



















# Barker/Diacon Snubber Test Equipment

THE FORCE IN SNUBBER TESTING

1310 Miller Rd. Greenville, SC 29607 800-349-3149 jeff@barkerproducts.net nathaniel.potter@diaconcorp.com www.barkerproducts.com www.diaconcorp.com

## Snubber Test Bench Systems



Barker/Diacon

## Snubber Test Bench Upgrade



## In-Place Test Machine Model IPST-10

## Quick Simple Setup & Operation

- Versatile, Continuous Duty Rated
- Activation Flow Rates to 18 GPM
- Max Pressure to 12,000 PSI
- Test snubbers, filter fluid or use as a flow bench to adjust control valves
- Operators can be up to 100 feet from snubber and instrument box
- Test snubbers as large as 20" bore and as small as 2 1/2" bore

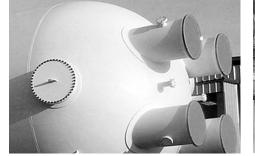


## Portable Filter Machine Model PFM-02

## Stage 1 Dirt and Water Removal:

This Filter Stage removes both solid contaminants and water. 25 Micron Impregnated paper for dirt removal Open Cell absorbent polymer water removal

## Stage 2 Polishing Element:


Filters suspended contaminants to 1 Micron in diameter Removal of oxidation and decomposition products from synthetic fluids



Fill the reservoir with fluid, set the timer and flow speed switches, and this machine will filter the fluid "Unattended" until the timer switch runs out. When either of the filter elements become dirty, the machine will automatically shut down. Warning lights on the panel will tell the operator that the filter elements need to be changed before the machine can be restarted. Fluid can be poured directly into the reservoir, or drawn from an external source by changing the external suction ball valve position



Nuclear Division









**Enertech - Overview** 









## **Curtiss-Wright Snapshot**



**\$2.5B** 2022E Sales

\$5.2B Market Cap

90 Countries Served

40 Major Sites (>50 employees)

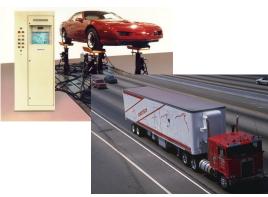
7.8k Employees

1.8k Engineers

## **Enertech Early Beginnings**










1952

- Paul-Munroe Hydraulics Inc.
- California hydraulic distributor, manufacturer
- Enertech established 1987: P-M Energy Products
- Technology-defined company
- Hydraulic snubbers, EHOs
- Bettis distributor







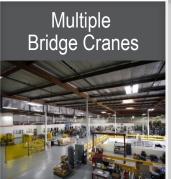






## **Brea Operations**






70,000 sq. ft. 2 locations 100+ Employees Dedicated to Nuclear











## **Quality Standards**

ASME Scope: Class 1,2,3

pressure vessels, pumps, valves, mc vessels, piping systems, appurtenances and supports



### QA programs meet:

ASME Section III NCA3800 & 4000 ASME Section XI – IWA 4400 Nat'l Board – NBIC-23 NR Stamp ANSI N45.2 10CFR50 Appendix B 10CFR Part 21 CAN/CSA N285, Z299, B51 ISO 9001:2015

#### Additional standards / certifications

IEEE 323, 344, 382 EPRI NP5652 & TR102260: NP7218 & TR 0171218 R1 ANS 56.2 Appendix J ASME NOA-1 AFCEN RCC-M

CRN / T.S.S.A. (Canada) HAF 604 (China) CNCAN-Romania ISCIR - Romania

NUPIC audited under observation of the NRC

NIAC member audited

Routine vendor inspection by NRC

## **Engineering Background, Experience & Capabilities**

### **NUCLEAR EXPERIENCE**

Exclusively Serving the Nuclear Power Industry Since 1967...

**Knowledgeable, Experienced and Diverse Engineering Team:** 

- **30 Nuclear-Experienced Engineers** with Mechanical, Chemical and Civil **Engineering Degrees**
- 8 RPEs with MS & PhD Degrees
- **Combined Nuclear Experience of over** 400 years
- **Backgrounds from Industry,** Academia, and Military



## **Engineering and Analytical Services – Custom Design Solutions**

### Design and Retrofitting Capabilities

- Snubbers
- Qualified metallic support structures
- Valves and flow control devices
- Actuators and operators

## State-of-the-Art Analysis Capabilities

- Structural/stress/thermal analysis
- Seismic analysis
- Flow analysis
- Failure root cause analysis
- Failure Mode and Effects Analysis (FMEA)

#### ASME Code and Qualification Services

- ASME QME-1 Qualification
- ASME Section III Design Reports
- ASME Sec. III RPE Representation
- IEEE 323, 344, 382 Qualification
- ASME Section IX Welding
- Commercial grade dedication services in accordance with EPRI guidelines
- MOV design basis calculations based on EPRI guidelines (GL 89-10 Sizing)

## **OEM Alliances**

## PARTNERS UNDER ENERTECH QA PROGRAM





















## PARTNERS UNDER OEM QA PROGRAM













**VALVES** 

**ACTUATORS** 

**INSTRUMENTATION** 











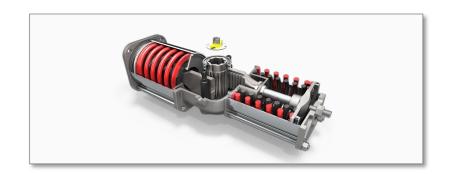
**PUMPS** 





**VALVES** 

**ACTUATORS** 




**INSTRUMENTATION** 

**PUMPS** 

DYNAMIC **RESTRAINTS** 





**VALVES** 

**ACTUATORS** 



INSTRUMENTATION

**PUMPS** 

**DYNAMIC RESTRAINTS** 







TRANSDUCER
MODEL OTZEGRANEZE
MODEL OTZEGRANEZE
MODEL OZ JEG PSI
AND SOPPLY 25 PSI
SOP LISO?



**VALVES** 

**ACTUATORS** 

**INSTRUMENTATION** 

**PUMPS** 

**DYNAMIC RESTRAINTS** 





**VALVES** 

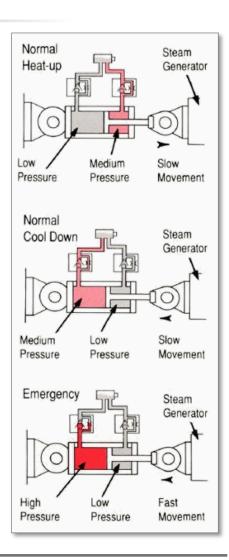
**ACTUATORS** 


**INSTRUMENTATION** 

**PUMPS** 

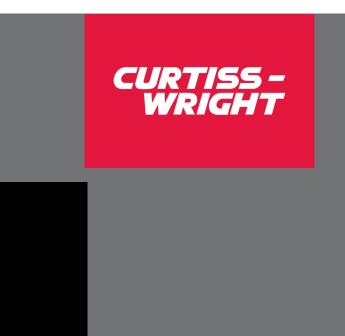
DYNAMIC RESTRAINTS








## **Snubbers**


- Provide protection to major components during a seismic event
  - Allows for thermal expansion and contraction during normal plant operation
- Complete replacement, parts, and refurb support for:
  - Enertech, Paul-Munroe, Anker-Holth/McDowell Wellman, E-Systems, Phoenix
- Expanded onsite field service and outage support
  - In cooperation with CW Scientech Outage and Field Management Solutions (OFMS) team





## **Large Bore Hydraulic Snubbers**

## **Thank You**



**Questions?** 

www.cwnuclear.com







### **Business Profile**

### Location

- Headquarters in Columbia, NJ
- Full Design, Manufacturing & Testing Facility
- Remote Representatives across North America



## Capability

- Remote Visual Inspection (RVI) Products
- Foreign Object Search and Retrieval (FOSAR) Tools
- Custom Engineering Capabilities

#### Industries

- Aerospace/Aviation
- Structural Inspection/Surveillance
- General Manufacturing
- Government/Defense
- Nuclear Power Generation





## Nuclear Power Generation RVI/FOSAR Products









intertest.com | +1 908 496 8008



# Ttenda Cam HD AIR

#### **Features**

- <u>Camera Heads:</u> Swappable 10x or 30x Optical Zoom
- <u>Weight:</u> < 10 lbs
- Pole Length: 25'
- Pole Material: Carbon Fiber w/ anti-spin notching
- Wireless Camera Interface: creates own WiFi access point
- <u>User Interface/Display:</u> iOS / Android Tablet/Phone
- Image/Video Capture: Touch Screen GUI
- Storage Media: Internal SSD
- <u>IP Rating:</u> IP50
- <u>Battery:</u> Commercially available, rechargeable 12V
- <u>Battery Life:</u> 2 hours
- <u>Lighting:</u> Integrated White LED
- <u>Tilt Control</u>: Joystick Digital Proportional Control
- Stabilization: Foot Gimble for Single Operator Control







iOS Table and Joystick





#### Manual Inspection



Scaffolding Build/Setup 4 people, 1 shift, \$2000 cost (on avg)



Long Inspection Times



Risk of Workplace Incident Personnel 30' feet above work areas

# XtendaCam HD AIR Inspection



No scaffolding setup



Single inspector operation



10-minute inspections



Safer Workplace



VT-3 Qualified\*

\*InterTest customers able to get XtendaCam qualified for VT-3 inspection work.



# Stenda Cam HD AIR



intertest.com | +1 908 496 8008

# LAKE ENGINEERING COMPANY

**ESTABLISHED 1984** 

# TECHNICAL SERVICES

SNUBBER AND PIPE SUPPORT DESIGN SERVICES

SEAL LIFE EVALUATION

**FLUID ANALYSIS** 

SNUBBER AND PIPE SUPPORT TRAINING

REVERSE ENGINEERING

# MATERIALS

**SNUBBERS AND PIPE SUPPORTS** 

REPLACEMENT PARTS

**SEAL KITS** 

SILICONE FLUIDS

**MECHANICAL SNUBBER TOOLS** 



# Located in Kodak, TN



# **LISEGA** Facilities







Zeven, Germany – Main plant

Zeven, Germany

Kodak, TN







Kodak, USA





Bondoufle, France

Shanghai, China







Shanahai, Chir







New Delhi, India

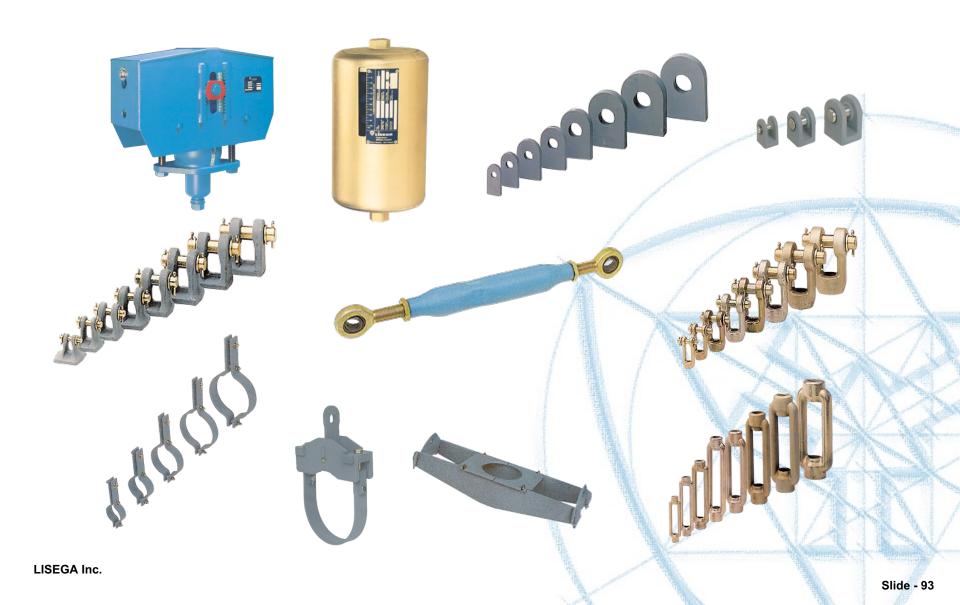
Netherton, England







Wittenburg, Germany (LISEGA affiliate for






Netherton, England

Wittenburg, Germany

# **LISEGA** Parts



# Piping & Large Bore Snubbers

LISEGA Inc.



# **Questions?**



LISEGA Inc.



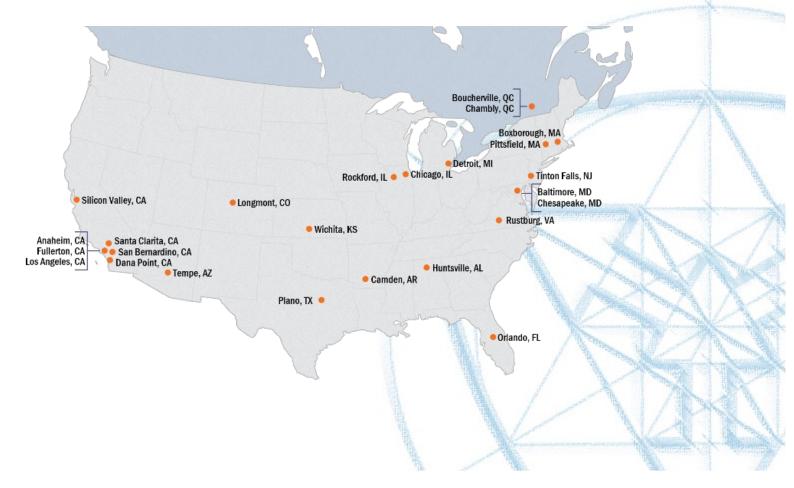




**NUCLEAR ENGINEERING** & TESTSERVICES

www.nts.com




# NTS COMPANY PROFILE





NTS NORTH AMERICA ENGINEERING SERVICE CENTERS

LISEGA Inc.





THE PARTY OF THE P



# NTS HUNTSVILLE HIGHLIGHTS



- · 160,000 sq. ft. laboratory on 92-acre facility
- Over 50 chambers, up to 30'x18'x18'
- 10 CFR 50 Appendix B Program, NQA-1, ISO 9001, A2LA Certification
- Radioactive Material License from the State of Alabama
- On-site engineering, fabrication and calibration capabilities



# HIGHLY SPECIALIZED NUCLEAR TEST FACILITY



#### QUALIFICATION TEST SERVICES

- Four Seismic Simulators
- Six Accident Test Autoclaves
- One 150 psi, 3,000 lbs per hour boiler
- 300KW Steam Super Heater System
- One Boron Chemical Spray Injection System
- Seven EMI Test Rooms



#### THIRD PARTY QUALIFICATION

- Sole Supplier of Yokogawa Products
- 4000+ previously qualified items
- Cybersecurity Services
- Material Verification



#### **VALVE TESTING SERVICES**

- Three Safety Relief Valve Test Cells for steam, water and air
- UPGRADED Full Flow Steam Test System to 2,000,000 lbs/hr max and 1400 psi max
- Full Flow Hot Water Test System 2200 psi
- Hot Water Closed Loop Flow System 30,000 gallons
- Cold Water Closed Flow Loop System 60,000 gallons
- Two 3,000 psi, 6,000 lbs per hour boilers and one 1,500 psi 12,000 lbs per hour boiler





## **SNUBBER SERVICES**



# SNUBBER TRAILERS











# SNUBBER TEST MACHINE





# SNUBBER TEST MACHINE





# SNUBBER TEST MACHINE



# HUNTSVILLE SNUBBER TEST LAB





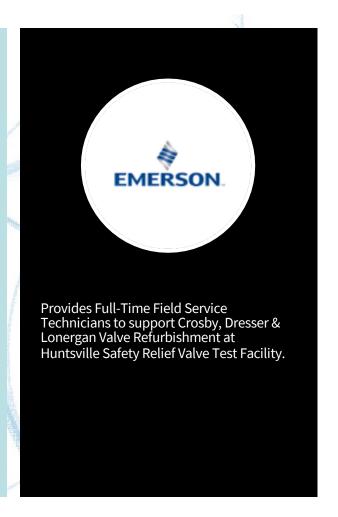
# **STRATEGIC PARTNERSHIPS**



US Nuclear authorized service arm for Snubber Testing and Repair



Qualification & Supply of self-lubricating bearings for nuclear power plants domestic & abroad






# **STRATEGIC PARTNERSHIPS**



Provides Full-Time Field Service Technicians to support Target Rock Valve Refurbishment at Huntsville Safety Relief Valve Test Facility. Safety Relief Valves





### CONTACTS

#### **Greg Mason**

Director of Nuclear Strategic Development 256-603-0903 Greg.Mason@ntslabs.com

#### Eric Kelland

Nuclear Sales Manager 240-931-9002 Eric.Kelland@ntslabs.com

### **Keith Haney**


Nuclear Sales Manager 256-698-7885 Keith.Haney@ntslabs.com

#### **Brad Ferguson**

General Manager – Nuclear Division 256-527-9449 Brad.Ferguson@ntslabs.com

### Jeromey Rucinski

Snubber Dept. Manager
256-843-9744
256-716-4292
<u>Jeromey.Rucinski@ntslabs.co</u>
<u>m</u>



## Lunch



Building connections that last™

RETURN BY 1:00 PM

# ADMINISTRATIVE ITEMS SCOTT ESPOSITO



### • General Items

Question Cards / Benchmarking Cards

### • Agenda Overview

- Conduct of a Snubber Testing
- Test Plots for Dummies
- Hydraulic Snubbers Seal Life and Seal Integrity Testing
- Test Plots Raw Data Acquisition and Analysis
- Unusual Test Plots
- Business Meeting



## CONDUCT OF SNUBBER TESTING

Presented by Gus Avila & Scott Esposito
Summer 2023 SNUG
Conference

# Conducting a Snubber Test

### **ISTA Testing Requirements:**

- ISTA-9230 Inservice Test and Examination Results
  - Component ID
  - Date of test
  - Reason for test
  - Test Procedure
  - Test Equipment ID
  - Traceability to Calibration Records
  - Measured Parameters
  - Comparison to allowable ranges and analysis of deviations
  - Corrective actions
  - Person(s) for conducting and analyzing test results

## Conducting a Snubber Test

## **ISTA Testing Requirements:**

- ISTA-9240 Record of Corrective Actions
  - Maintain Record of Corrective Actions
  - Summary of Corrective Actions
  - Printed (or typed) name and signature of person(s) responsible for the corrective action and verification of results.

# Pre-Outage Snubber Testing

#### **Organization:**

- Communication periodic meetings with Operations, Engineering, Outage Schedulers, Online Schedulers, NDE, Construction Personnel and Testing Vendor.
- Topics include:
  - Scope
  - Spare snubbers (refurbished on-site or off-site)
  - Test trailer setup or onsite testing equipment
  - Contractor test personnel, tooling, consumables, etc.
  - Visual Examinations Pre-Removal and Post Maintenance Test
  - Package sign on process
  - Scheduling
  - Craft personnel for Removal/Installation

# Pre-Outage Snubber Testing

### **Required Documentation:**

- Engineering evaluation which classifies which snubbers meet the requirements of LCO 3.0.8. or any other evaluation
  - Does the snubber perform a function other than seismic?

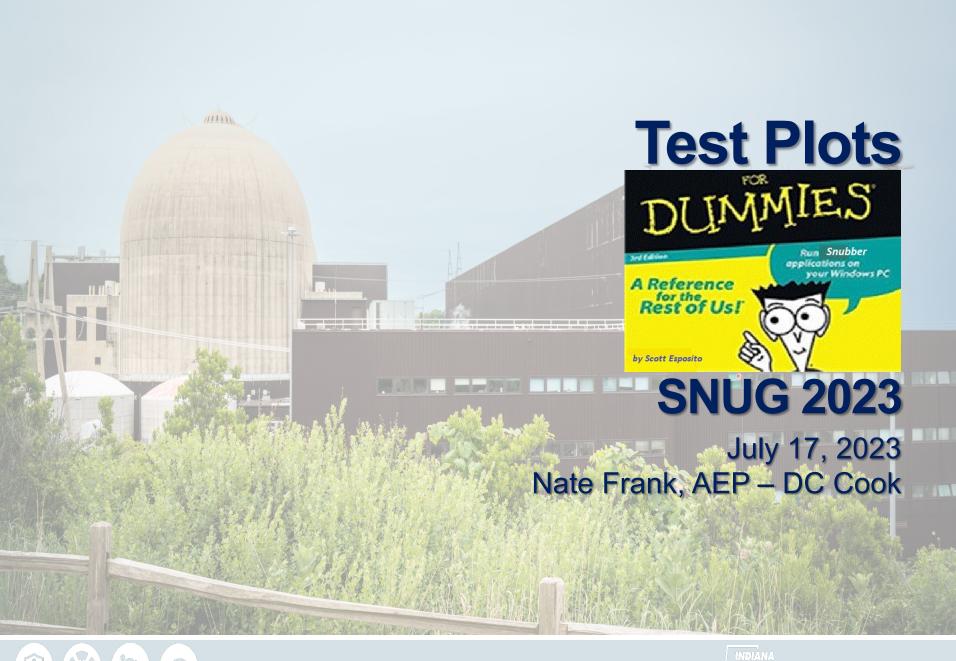
### Scheduling:

- Scheduled in appropriate work window
- Non-Train or Division related
- Reduced dose fields

## **Snubber Test Execution**

#### **Test Procedures:**

- Many contain too much information old school mentality
  - 30 to 40 pages long for each snubber test
  - Coversheets for each test containing repetitive steps
- Streamline Work Step Process
  - Testing performed by qualified individuals
  - A Main Testing Procedure (Reference Use only)
  - Forms which are a subset of the Main Testing Procedure


## **Snubber Test Execution**

### **Test Report Review Documentation:**

- Test Operator documents Test Results Sat/UnSat
  - Print/Signature
- Test Reviewer concurs with Test Results

## **Snubber Test Execution**

# QUESTIONS?

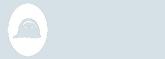








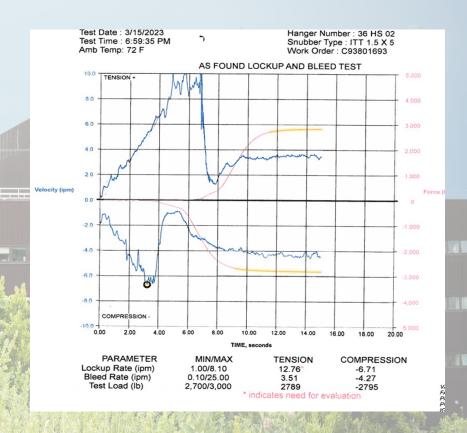



### Information

- All are As Found Functional Tests
- Different Manufacturers as indicated
- Absolute values used in test plots
- Typically test plots are symmetrical when comparing Compression to Tension
  - if it isn't 1st clue of a problem
  - Unusual Test Plots often indicate Imminent Failure
- Different Test Stands also used and identified












## ASC/Anvil/ITT-Grinnell/ Grinnell

- 9 Mile Point Station
- Smashed Reservoir
- Does this qualify for Isolated failure ISTD 5322
- Degraded not failed perhaps?
- ISTD-5322 Isolated Failure?
   Additional tests are not required for an isolated failure. All other visuals were SAT and this is external causation















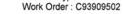
## ASC/Anvil/ITT-Grinnell/ Grinnell

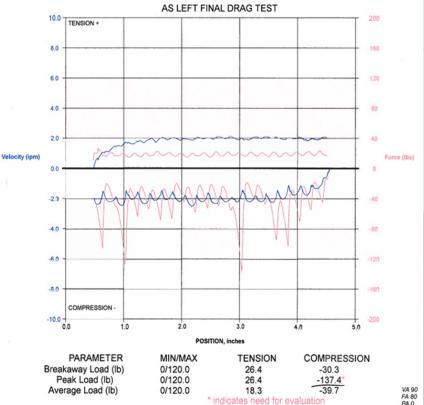
- 9 Mile Point Station
- Smashed Reservoir
- Does this qualify for Isolated failure ISTD 5322
- Degraded not failed perhaps?
- Additional tests are not required for an isolated failure. All other visuals were SAT and this is external causation










**PSA 3 from Ginna Generating Station** 

- Compression Peak Load Excessive
- Note lack of symmetry
- Compression Peak Load excessive compared to allowed Maximum (abs)value

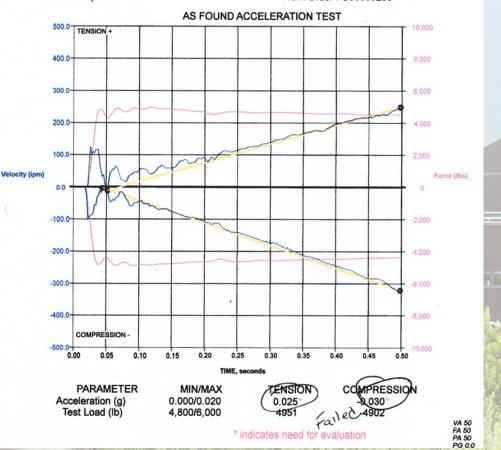
Test Date: 4/24/2023 Test Time: 9:53:33 AM Amb Temp: 70 F Hanger Number : MSU-55 Snubber Type : PSA 3 GINNA





FAILED

PA 0 PG 0.00 IG 0.00 RR 0.0 TT 0.5










Test Date: 4/21/2023 Test Time: 3:05:11 AM Amb Temp: 72 F Hanger Number : MSU-80 Snubber Type : PSA 3 GINNA Work Order : C93909253



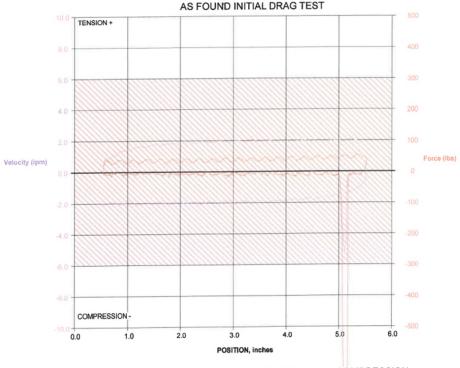
# **PSA 3 from Ginna Generating Station**

- Tension Acceleration is Excessive
- Compressive Acceleration is also excessive











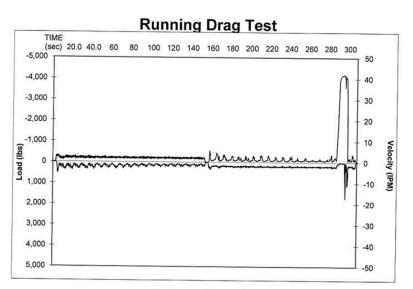

Test Date: 10/30/2022 Test Time: 5:38:22 AM Temperature: 72 F Hanger Number: EF03R016142 Snubber Type: PSA 10 - 2.0% Work Order: 21-471929-000

# PSA 10 Larger snubber

- Computer adjusts scale
- Note outright failure down
- Peak Load in Compression is 39.667% of total and far exceeds 10% normal acceptance criteria



| DADAMETER           | MIN/MAX                         | TENSION  | COMPRESSION  |
|---------------------|---------------------------------|----------|--------------|
| PARAMETER           | IVIIN/IVIAA                     | LIVOIOIV | OOMI RECOICI |
| Breakaway Load (lb) | 0/300.0                         | 42.2     | -7.0         |
| Peak Load (lb)      | 0/300.0                         | 54.9     | -1190.0      |
| Average Load (lb)   | 0/300.0                         | 37.8     | -19.6        |
|                     | * indicates need for evaluation |          |              |
|                     |                                 | SEE SEE  |              |














#### **Running Drag Test Results**

Wyle Model 150 /S.N. 119 - Operator: Benny Reid BR 10-5-22 Wednesday, October 05, 2022 14:37:39

Work Request Number: 121745876

Cold Set: 0

Service Temp: 0

Ambient Temp: 71

Examination Number: 100145 Mark Number: 1-SNUB-010-5052 Component Number: M-1204-1 Snubber Ser. Number: 42605 Snubber Type: PSA-10 Rated Load: 15000

Operator Comment: RUNNING DRAG (INITIAL) AS FOUND

Average Drag Force Experienced During Run (Tension) = 161.93 lbs. (1.08%)
Peak Drag Force Experienced During Run (Tension) = 506.22 lbs. (3.37%)
Average Drag Force Experienced During Run (Compression) = 371.01 lbs. (2.47%)
Peak Drag Force Experienced During Run (Compression) = 4,198.39 lbs. (27.99%)
Acceptable Tension Average Drag Force. (lbs. < 750)
Acceptable Tension Peak Drag Force. (Ds. < 750)

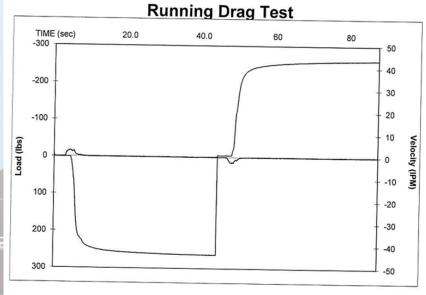
Acceptable Tension Peak Drag Force. (lbs. < 750)
Acceptable Compression Average Drag Force. (lbs. < 750)
Acceptable Compression Peak Drag Force. (lbs. < 750)

## Wyle Labs Test Stand PSA 10

- Rated Load 15,000 Kip
- Peak Drag force exceeds 10%... 4,196 lbs or ~28%
- Older test stand












# Wyle Labs Test Stand PSA 1/4

- Rated Load 350 Kip
- Peak Drag force exceeds ~10% @ 32.51
- Reading Tension at 75.42% of capacity or ~274#s
- Reading Compression at 62% or ~257#s
- Older test stand



Running Drag Test Results

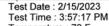
Wyle Model 150 /S.N. 119 - Operator: Benny Reid BR 3-6-23 Monday, March 06, 2023 12:49:07

Examination Number: 200278 Mark Number: 2-SNUB-001-5065 Component Number: M-1102-1 Snubber Ser. Number: 6666 Snubber Type: PSA-1/4 Rated Load: 350

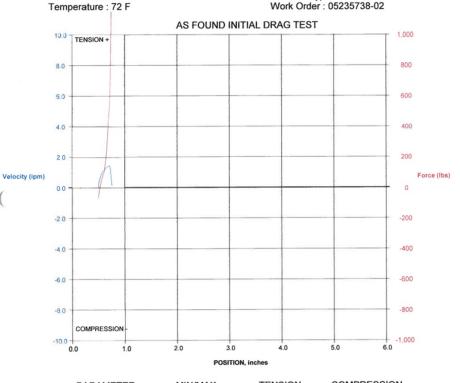
Operator Comment: RUNNING DRAG (INITIAL) AS FOUND

Average Drag Force Experienced During Run (Tension) = 223.95 lbs. (63.99%)
Peak Drag Force Experienced During Run (Tension) = 263.95 lbs. (75.42%)
Average Drag Force Experienced During Run (Compression) = 217.83 lbs. (62.24%)
Peak Drag Force Experienced During Run (Compression) = 256.55 lbs. (73.3%)
Acceptable Tension Average Drag Force. (lbs. < 32.51)
Acceptable Tension Peak Drag Force. (lbs. < 32.51)
Acceptable Compression Average Drag Force. (lbs. < 32.51)
Acceptable Compression Peak Drag Force. (lbs. < 32.51)

Work Request Number: 123513891 Cold Set: 0 Service Temp: 0 Ambient Temp: 72












Hanger Number: MS04-2746S Snubber Type: PSA 10



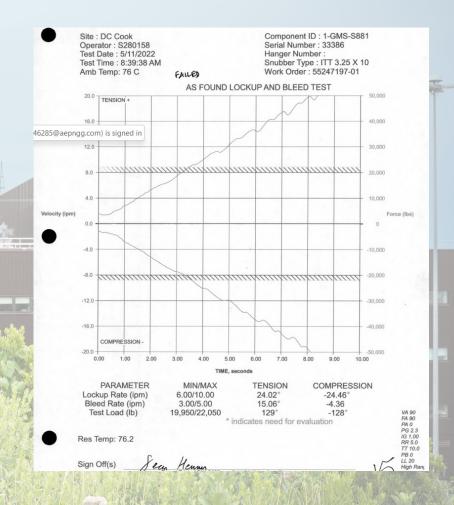
#### PARAMETER MIN/MAX **TENSION** COMPRESSION 0/750.0 96.5 0.0 Breakaway Load (lb) 1957.6\* 0.0 Peak Load (lb) 0/750.0 FA 80 475.2 0.0 0/750.0 Average Load (lb) \* indicates need for evaluation

## Barker/Diacon Test Stand PSA 10

- Rated Load 15,000 Kip
- Peak Drag force exceeds 10%...
  4,196 lbs or ~28%
- Older test stand







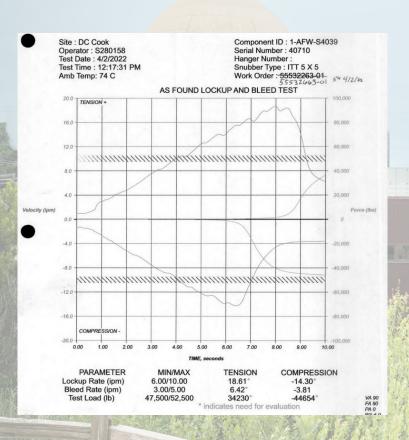





### AEP - Cook Plant

- Barker/Diacon Test Stand
- Rated Load 21 Kip
- Anvil 3.25x10 Fig 201 Config A
- Installed in 1998
- Pushed off MS Visuals to allowed 2 cycles due to COVID-19
- Started(& Finished) leaking between cycles
- Loss of Fluid
















### **AEP - Cook Plant**

- Barker/Diacon Test Stand
- Rated Load 50 Kip
- Anvil 5x5 Fig 201 Configuration A
- · Loss of Fluid
- Installed U1C29
- Started leaking ~8 months into life cycle











## What happens now?

Source: ISTD 2004 w/2006 Addenda

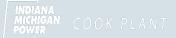
- ISTD-5312 Additional Sample Size
  - When additional samples are required by ISTD-5320, they shall be at least one-half the size of the initial sample from that DTPG.(This
- ISTD-5313 Additional DTPG Sample Composition
  - When an unacceptable snubber has not been assigned to an FMG, the additional sample required by ISTD5320 shall be taken from the DTPG. As practicable, the additional sample shall include the following:
    - (a) snubbers of the same manufacturer's design
    - (b) snubbers immediately adjacent to those found unacceptable
    - (c) snubbers from the same piping system
    - · (d) snubbers from other piping systems that have similar operating conditions such as temperature, humidity, vibration, and radiation
    - (e) snubbers that are previously untested
- ISTD-1800 Supported Component(s) or System Evaluation
  - An evaluation shall be performed of the system(s) or components of which an unacceptable snubber is a part, for possible damage to the supported system or component.

Note: This will likely require Design Structural, (or whoever evaluates your piping systems) to do a piping validation and take up limited resources

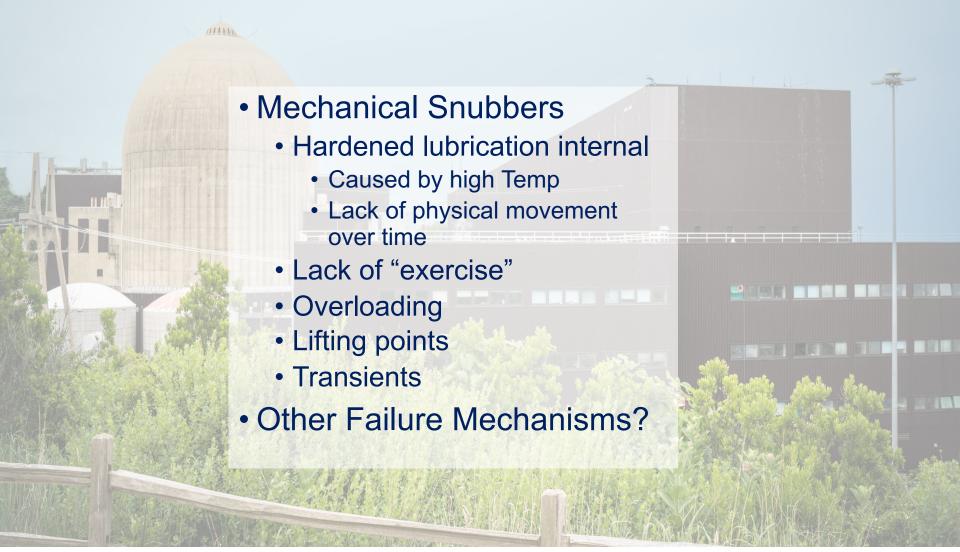












## **Description of Test Bench Acronyms**

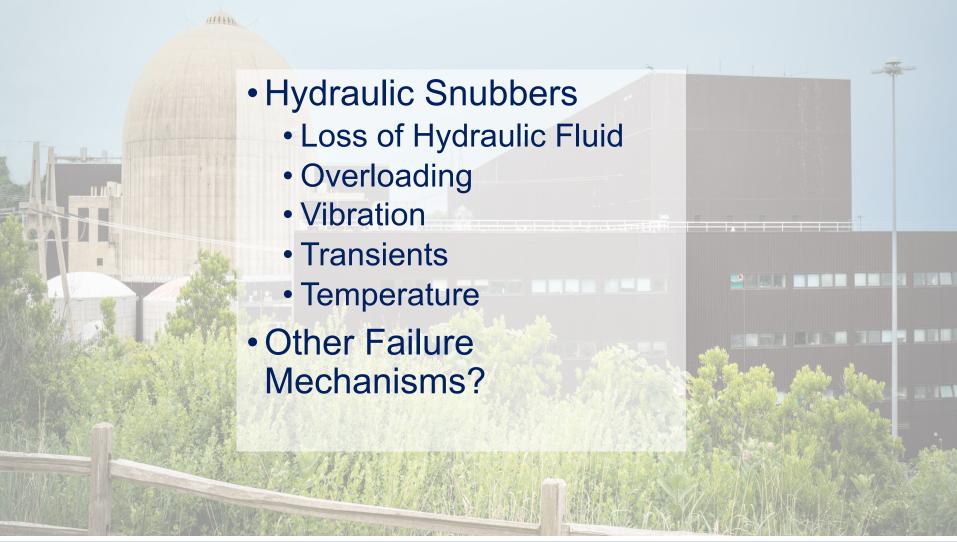
- VA,FA,PA Velocity, Force, and Position averaging A higher number means more averaging when it comes tracing the graph. It's important to note that averaging DOES NOT alter the raw data in the test, this is just to clean up the traces.
- PG, IG Proportional Gain and Integral Gain These values dictate how the software is going to handle the load after lockup on a hydraulic snubber test. Essentially proportional gain dictates how quickly the bench is going to try and get up to the desired test load, and integral gain determines how vigilant the bench is going to be at keeping the load in the desired range. Too high a proportional gain may cause you to overload the snubber (if the upper bound on your allowed test load is close to full rated load). When adjusting it, or setting it initially, it's always better to err on the side of having a low value, then creep that number up until the test is getting up to load at a desirable time.
- RR Ramp Rate correlates to the acceleration curve during the lockup portion of a hydraulic test. Higher means it will try and lockup the snubber faster. Important to note that this number is essentially a multiplier for a constant in the code, and isn't in any sort of defined unit (so a ramp rate of 2 doesn't mean you'll get a ramp rate that accelerates at 2 ipm/s).
- TT Test Time duration of the test. PB Pressure Boost is only active during mechanical snubber acceleration tests. It allows the user to increase or decrease the pressure the bench builds before firing off its test, if there is an issue where the benches' automatic pressure calculation for some reason overshoots or undershoots the required load.
- LL Lockup Limit The point (as a percent of the rated load of the snubber) at which the
  computer determines that a snubber has locked up. So when it sees this load during an
  activation test, the computer will swap from controlling the test via ram velocity and start
  controlling it via load on the snubber. Low Range This is sort of outdated language, but
  it just means which bench is being used. Low Range (load cell) or High range (load cell).





### **Common Causes – Mechanical**












## Common Causes – Hydraulic









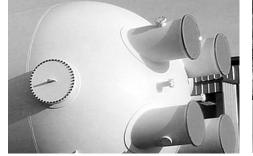


## **Questions**
















Nuclear Division





# Hydraulic Snubbers – Seal Life and Seal Integrity Testing



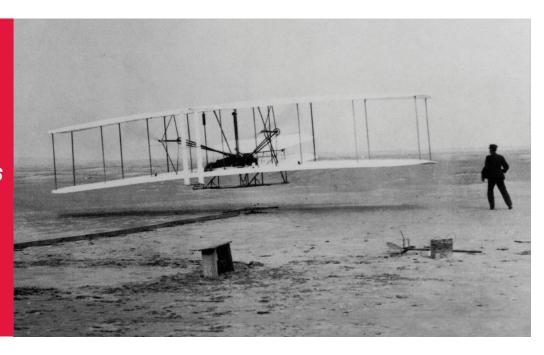
Presenter:

Guy Levy, Business Development Manager



SNUG Conference | Summer 2023








## **Curtiss-Wright Corporation**

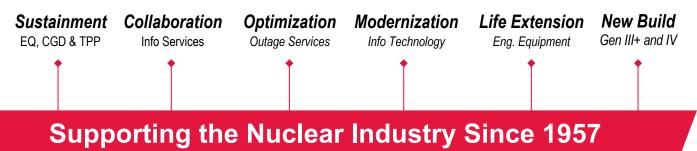
# PIONEERS OF INNOVATION

Tracing its history back to the First
Flight at Kitty Hawk, Curtiss-Wright has
evolved into a global organization that
provides highly-engineered, missioncritical solutions to the Aerospace &
Defense, Power & Process, and
General Industrial markets.












### **Nuclear Legacy**



Reactor Coolant Pump Shippingport PA



Farris EST Group SCIENTECH NETCO AServices, LE Target ENERTECH NOVA Trentec QualTech NP

>700 Employees 13 Major Facilities

Diversified supplier of safety-critical equipment, technology, and services to the world-wide commercial nuclear power industry

### Paul-Munroe Hydraulics Inc.: Enertech's Heritage









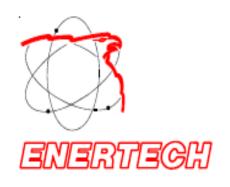
- Paul-Munroe Hydraulics Inc.
  - California hydraulic distributor, manufacturer
  - Enertech established 1967: P-M Energy Products
- Technology-defined company
- Hydraulic snubbers, EHOs
- Bettis distributor











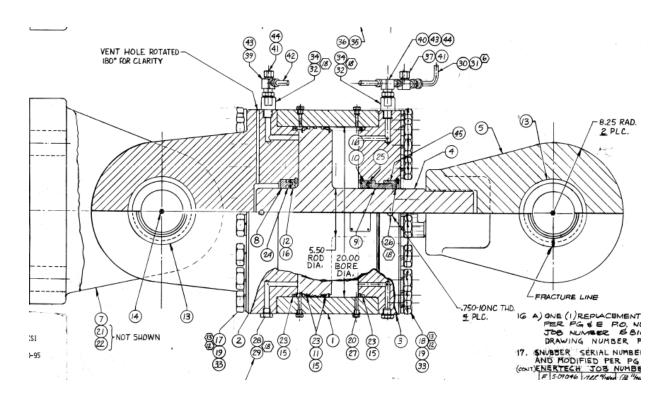


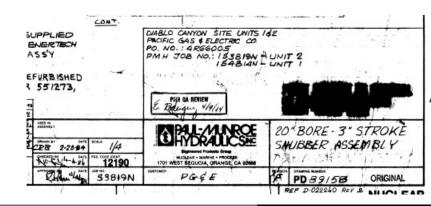

1952

### **History Timeline**









1967- Energy Products Division- Enertech

1987-Enertech becomes independent private owned corporation

1998-Curtiss Wright acquires Enertech

## Early Generation Hydraulic Snubber, 1984 (Steam Generator)





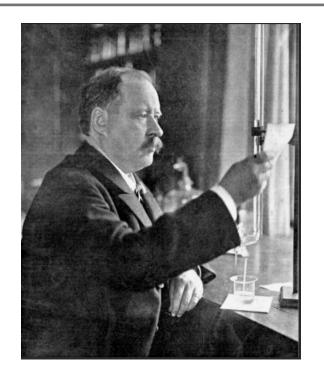
### **Presentation Outline**

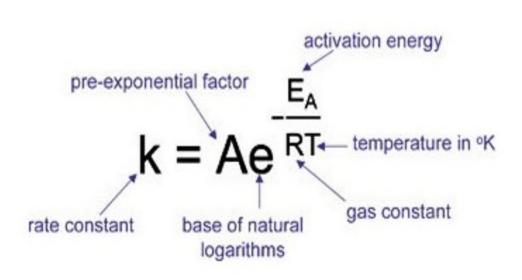
Why seals don't last and how to predict expiration date

Why and how to perform snubber seal integrity testing

The (lack of) connection between these two topics

## Why Do Seals Expire?


The breaking down of bonds in an elastomeric seal is a


chemical reaction

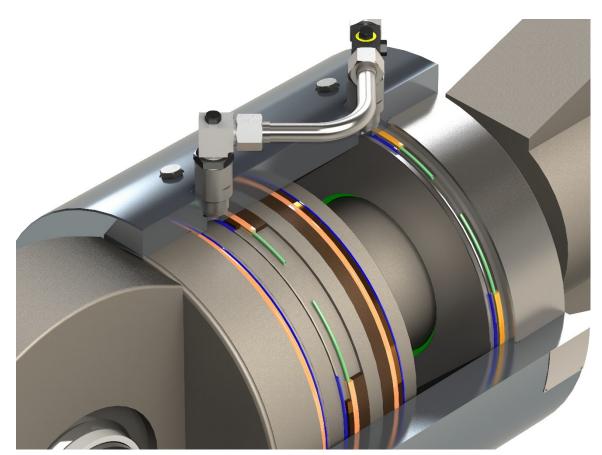


- Rate of a chemical reaction depends on temperature
- **Arrhenius Equation the mathematical relationship** between reaction rate and temperature

## **Svante Arrhenius and the Equation**






- Reaction rate changes exponentially with temperature
- Activation energy is a material property

## Reformatting the Arrhenius Equation

$$T_{d} = T_{i} e^{\oint K} \left[ \frac{1}{A_{t}} - \frac{1}{O_{ti}} \right]$$

- Td = Time at High (Accelerated) Temperature
- Ti = Operating Lifespan, at Normal Temperature
- At = Accelerated Temperature, as Tested
- Oti = Plant Operating Temperature

## Typical Paul-Munroe Large Capacity Snubber with U-Cup Seals





**Paul-Munroe U-Cup Pressure Seal** 

## **Thermal Aging Calculation**

$$T_d = T_i e^{\oint K} \left[ \frac{1}{A_t} - \frac{1}{O_{ti}} \right]$$

- Step 1: Select Expected Operating Lifespan
  - 40 Years the life of the plant

- **Step 2: Select Max Expected Operating Temperature** 
  - 110°F, based on expected max ambient temp

- Step 3: Calculate Test Duration at High Temperature
  - 24 days at 250°F
- **Step 4: Test**

#### Test Results

Successful testing - the seals did not degrade beyond failure point

Tensile strength: -33%

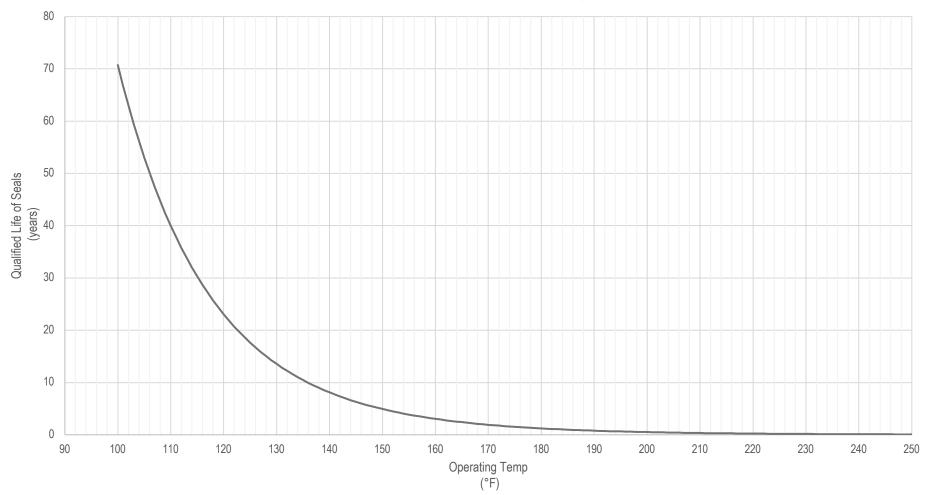
- Elongation: -45%
- Hardness (Shore D): 1.3%
- Compression Set: 37%
- Conclusion: Acceptable to Operate for 40 Years at 110°F
- Note: thermal aging was performed together with radiation aging and cycle + shock testing
  - 42 Mrads Gamma radiation TID
  - Included Faulted load DBE (2,000,000 lb) test before and after aging



#### Snubber Functional Post-Qualification Evaluation

- **Changes in Snubber Performance from Qualification** 
  - Spring Rate: 13.3%
  - Breakaway Force: 62%
  - Rod Velocity: -9.2%
- **Changes in SF-1154 Fluid Properties from Qualification** 
  - Particulate Weight: 357% 1
  - Total Acid No: 750%
- Test results supported 1989 NUREG/CR-5870 Snubber Aging Research Findings of age-related degradation of Snubber installed base

## **Another Way to Use the Arrhenius Equation**


$$T_{d} = T_{i} e^{\oint K} \left[ \frac{1}{A_{t}} - \frac{1}{O_{ti}} \right]$$

Solve for Ti (Qualified Life) as a function of Oti (Operating Temp)

- Td = Time at High (Accelerated) Temperature
- Ti = Operating Lifespan, at Normal Temperature
- At = Accelerated Temperature, as Tested
- Oti = Operating Temperature

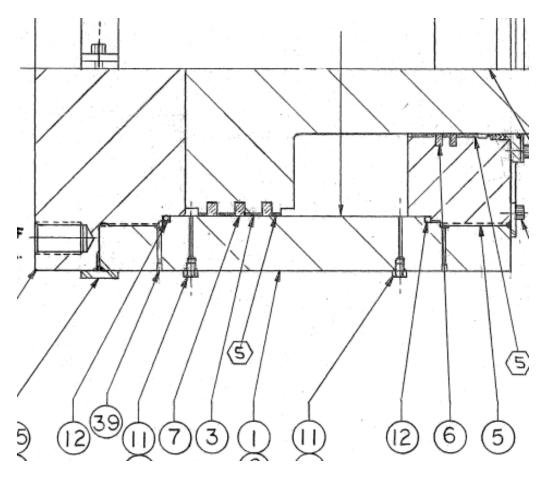
## **Thermal Aging Curve**





## **Notes On Thermal Aging**

- Not tested to "destruction" longer duration and/or higher temperature may also have succeeded (adds risk)
- Qualified life highly dependent on operating temperature at the position of the seal.
  - Temperatures during operation are difficult to assess
- Extending qualified life is not a simple task
- Tefzel is qualified for 40 years, other materials such as EPR and Viton generally qualified for just 5 or 10 years


## **Thermal Camera Image Example**



63.8°C = 146°F

39°C = 102°F

## **Not All Snubber Seals Expire...**



| 5 | PD14316 | 1 | 45   | D-261400 | ROD HEAD      |
|---|---------|---|------|----------|---------------|
| 6 | PA25825 | 2 | IRON | 055107-A | ROD RINGS     |
| 7 | PA25824 | 3 | IRON | A-701229 | PISTON' RINGS |

## "Old" Design



## **Seal Integrity Testing**

## Vague requirement in ISTD paragraph

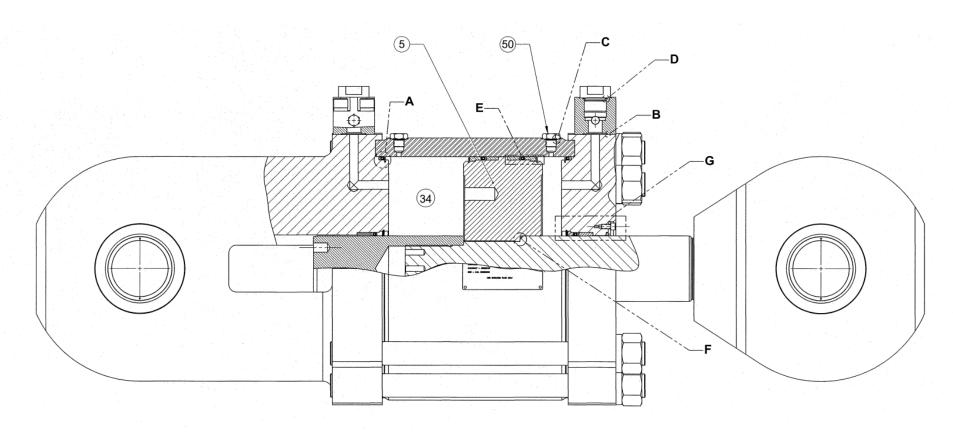
CODE FOR OPERATION AND MAINTENANCE OF NUCLEAR POWER PLANTS

ASME OM CODE-2004

#### ISTD-6400 Additional Monitoring Requirements for Snubbers That Are Tested Without Applying a Load to the Snubber Piston Rod

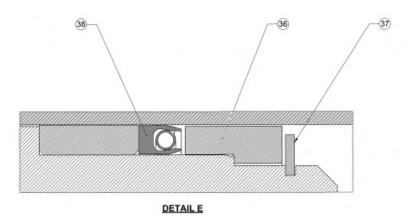
The service life evaluation, for hydraulic snubbers that are tested without applying a load to the snubber piston rod, shall consider the results of the following requirements:

(a) monitoring the particulate, viscosity, and moisture content of one or more samples of hydraulic fluid from the main cylinder of the snubber. This may be accomplished using snubbers of the same design in a similar or more severe environment.

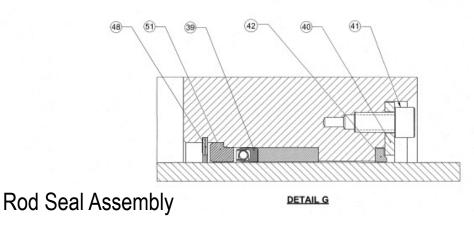

(b) monitoring of piston seal, piston rod seal, and cylinder seal integrity. If seal integrity is monitored by pressurization, pressures less than the snubber's rated load pressure may be used. Minimum pressure allowed shall be specified by the Owner.

#### ISTD-6500 Testing for Service Life Monitoring Purposes

If testing is conducted specifically for service life monitoring purposes, the results of such testing do not require testing of additional snubbers in accordance with ISTD-5320 or ISTD-5420, but shall be evaluated for appropriate corrective action.


## Why do Snubber Seals Matter?

Two types – Dynamic Seals and Static Seals




## **Dynamic Seals**

#### Piston and Rod Seals

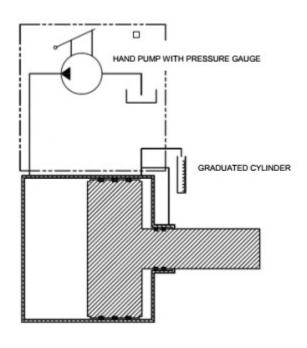


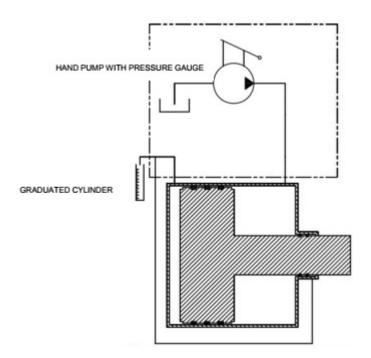
Piston Seal Assembly



#### Possible Seal Failure Modes

- Gross piston or rod seal failure may render the snubber inoperable
  - Fluid may not lock up control valves if allowed past the piston seals (internal) or rod seals (external)
- Minor piston or rod seal failure may increase lockup/bleed velocity beyond design
- Static seal failure may also result in inoperable snubber or increased lockup/bleed velocity
- How much seal leakage is acceptable?
  - Depends on bleed rate (when control valves are locked) may depend on actual/tested values
  - Uncontrolled seal leakage cannot govern snubber velocity


## **Testing the Seals Without Removing Snubber**


#### Standard test on elastomeric seals:

- Apply ~20 psig on either side, monitor pressure decay
  - Cannot exert high pressure/load to snubber piston rod (will damage supported equipment)
- Default Passing Score: Test Passes at <10% pressure decay over 10 min
- Second Step: Further calculations based on measured decay
- Final Step: May measure actual leak rate

## **Testing Actual Leakage Rate Past Seals**

- Testing metallic seals (iron piston rings):
  - Apply ~20 psig each side, measure how much leaks by
  - Compare leak rate to as-tested bleed rate/velocity





#### **Thank You!**



## Questions?





## AFTERNOON BREAK SPONSORED BY



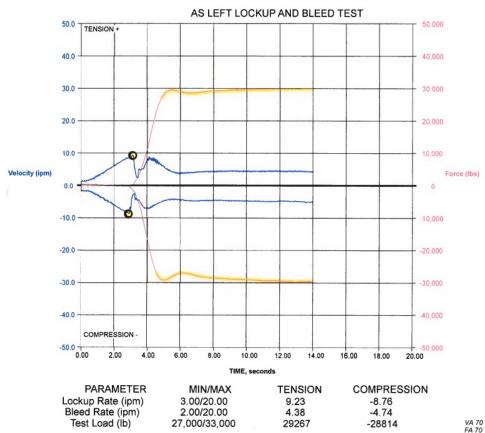
RETURN BY 3:00 PM

Presented by

Jeff Barker (Barker Products) & Nate Potter (Diacon)

Mike Fromhold (NTS)

**Scott Esposito** 


Summer 2023 SNUG Conference

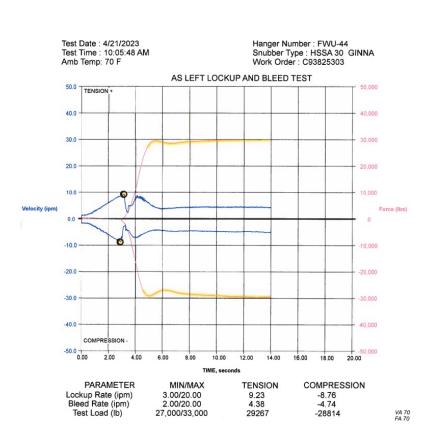
#### BERGENPATTERSON (LOCKUP & BLEED)

Test Date: 4/21/2023 Test Time: 10:05:48 AM Amb Temp: 70 F

Hanger Number : FWU-44 Snubber Type: HSSA 30 GINNA

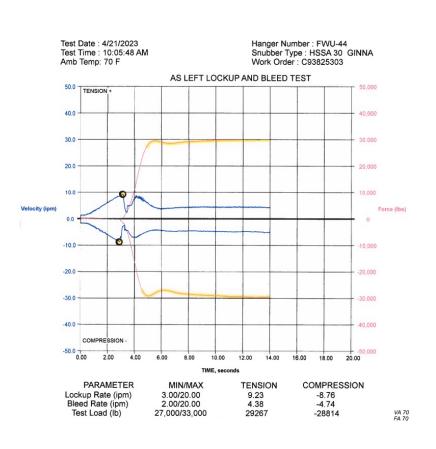
Work Order: C93825303




#### BERGENPATTERSON (LOCKUP & BLEED)

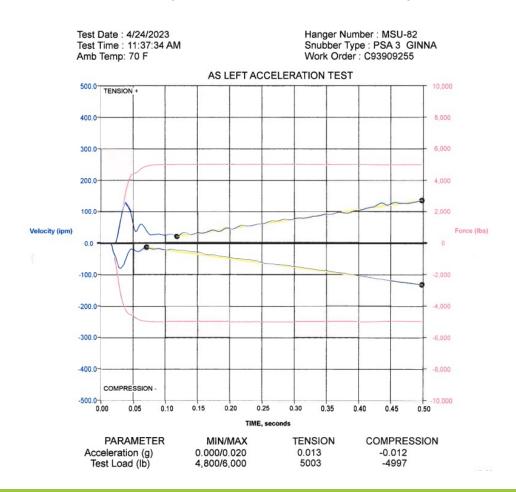
| SNUBBER              |               |                     |                  |
|----------------------|---------------|---------------------|------------------|
| IDENTIFICATION       | FIELD NAME    | ACCEPTANCE CRITERIA | FIELD NAME       |
|                      | Component ID  | 2                   | BAW Drag %FL     |
| HSSA 30 GINNA        | Type          | 2                   | Peak Drag %FL    |
| 30                   | FL Kip        | 2                   | Average Drag %FL |
| 6                    | Stroke        | 0                   | Min Accel        |
| ADH 3000 1244        | Serial Number | 0                   | Max Accel        |
| FWU-44               | Hanger Number | 3                   | Min Lockup       |
| TEST IDENTIFICATION  |               | 20                  | Max Lockup       |
| FINAL DRAG           | Test Type     | 2                   | Min Bleed        |
| FALSE                | As Found?     | 20                  | Max Bleed        |
| <b>GINNA STATION</b> | Test Site     | 90                  | Min Test Load    |
| Test Operator        | Operator      | 110                 | Max Test Load    |
| 4/21/2023            | Date          |                     |                  |
| 10:25:28 AM          | Time          |                     |                  |
| 70                   | Temperature   |                     |                  |
| C93825303            | Work Request  |                     |                  |
|                      | User Comment  |                     |                  |
|                      |               |                     |                  |

#### BERGENPATTERSON (LOCKUP & BLEED)


| MACHINE SETUP |                         |              |                            |
|---------------|-------------------------|--------------|----------------------------|
| CRITERIA      | FIELD NAME              | TEST RESULTS | FIELD NAME                 |
| 0             | Pressure Boost          | 1.427026     | <b>Bottom Out Position</b> |
| 3             | Prop Gain               | 6.927026     | Ext End Position           |
| 1.5           | Int Gain                | 1.927026     | Retract End Position       |
| 4             | Ramp Rate               | 4.427026     | Center Stroke Position     |
| 14            | Test Duration           | 200          | Readings per second        |
| 10            | Lockup Limit            | 682          | Last Compression Reading   |
| 70            | Position Averaging      | 601          | Last Tension Reading       |
| 70            | Velocity Averaging      | 85.13268     | Tension BAW                |
| 70            | Force Averaging         | -2.690113    | Tension Average            |
| 1             | Bench (0=small,1=large) | -178.1651    | Comp BAW                   |
| 0             | Lost Motion Limit       | -8212.025    | Comp Average               |
| 0             | Lost Motion Threshold   | -630.8383    | Comp Peak                  |
|               |                         | 0            | Tension Accel              |
|               |                         | 9.227947     | Tension Lockup             |
|               |                         | 4.377984     | Tension BL                 |
|               |                         | 29266.77     | Tension Load               |
|               |                         | 0            | Comp Accel                 |
|               |                         | -8.758591    | Comp Lockup                |
|               |                         | -4.742976    | Comp BL                    |
|               |                         | -28814.14    | Comp Load                  |

## BERGENPATTERSON (LOCKUP & BLEED)




| Position | Mala da  | F        | DATA Points |     |          |
|----------|----------|----------|-------------|-----|----------|
|          | Velocity | Force    |             |     |          |
| 3.953434 | 1.254456 | 60.56661 | 1           | MAX | 9.227947 |
| 3.951171 | 1.236008 | 54.15792 | 2           |     |          |
| 3.951661 | 1.237852 | 33.19234 | 3           |     |          |
| 4.182393 | 8.943949 | 296.6738 | 610         |     |          |
| 4.184597 | 8.968912 | 304.577  | 611         |     |          |
| 4.184254 | 8.997456 | 302.785  | 612         |     |          |
| 4.184957 | 9.050642 | 306.1082 | 613         |     |          |
| 4.185826 | 9.102631 | 305.688  | 614         |     |          |
| 4.186434 | 9.079989 | 304.4782 | 615         |     |          |
| 4.188368 | 9.06783  | 317.3643 | 616         |     |          |
| 4.188968 | 9.085146 | 310.8206 | 617         |     |          |
| 4.189765 | 9.104646 | 308.0711 | 618         |     |          |
| 4.192585 | 8.99654  | 311.6396 | 619         |     |          |
| 4.192485 | 9.046311 | 295.827  | 620         |     |          |
| 4.192792 | 9.055325 | 314.055  | 621         |     |          |
| 4.192442 | 9.09484  | 313.9973 | 622         |     |          |
| 4.193328 | 9.111432 | 318.5345 | 623         |     |          |
| 4.194137 | 9.130425 | 313.4708 | 624         |     |          |
| 4.195268 | 9.165858 | 318.166  | 625         |     |          |
| 4.195683 | 9.19804  | 321.4526 | 626         |     |          |
| 4.196163 | 9.227947 | 320.0911 | 627         |     |          |
| 4.199892 | 9.204607 | 323.7157 | 628         |     |          |
| 4.19892  | 9.114477 | 325.3374 | 629         |     |          |
| 4.199748 | 9.10673  | 320.9794 | 630         |     |          |
| 4.200893 | 9.027515 | 312.4356 | 631         |     |          |
| 4.201129 | 8.924101 | 332.0898 | 632         |     |          |
| 4.202048 | 8.788988 | 347.6787 | 633         |     |          |
| 4.20156  | 8.698098 | 358.591  | 634         |     |          |
| 4.202727 | 8.59758  | 379.047  | 635         |     |          |
| 4.20279  | 8.446047 | 402.5214 | 636         |     |          |
| 4.203023 | 8.347352 | 418.9536 | 637         |     |          |
| 4.204128 | 8.256128 | 438.6958 | 638         |     |          |
|          |          |          |             |     |          |

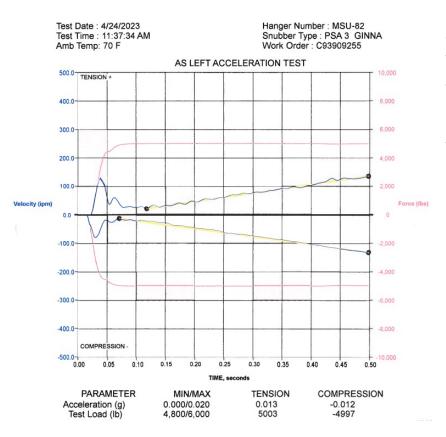
#### BERGENPATTERSON (LOCKUP & BLEED) TEST



| TENSION DA | TA       |          |             |                       |
|------------|----------|----------|-------------|-----------------------|
| Position   | Velocity | Force    | DATA Points |                       |
| 4.377951   | 6.291334 | 26891.16 | 976         |                       |
| 4.378239   | 6.252411 | 26937.08 | 977         |                       |
| 4.378252   | 6.169821 | 26980.2  | 978         |                       |
| 4.378826   | 6.075113 | 27025.04 | 979         | Range 27000-33000 lbs |
| 4.380171   | 6.06416  | 27065.58 | 980         |                       |
| 4.379038   | 6.045425 | 27091.21 | 981         |                       |
| 4.379      | 6.072896 | 27140.28 | 982         |                       |
| 4.380104   | 6.014644 | 27166.39 | 983         |                       |
| 4.380877   | 6.069797 | 27211.22 | 984         |                       |
| 4.381795   | 6.163747 | 27256.33 | 985         |                       |
| 4.382061   | 6.225823 | 27309.88 | 986         |                       |
| 4.383001   | 6.125382 | 27352.86 | 987         |                       |
| 4.383471   | 6.136245 | 27396.68 | 988         |                       |
| 4.383799   | 6.110642 | 27438.34 | 989         |                       |
| 4.386669   | 6.092721 | 27477.57 | 990         |                       |
| 4.386981   | 6.006384 | 27517.85 | 991         |                       |
| 4.387387   | 5.982844 | 27562.53 | 992         |                       |
| 4.386729   | 5.992193 | 27589.22 | 993         |                       |
| 4.3874     | 5.991358 | 27625.3  | 994         |                       |
| 4.387681   | 5.987084 | 27661.55 | 995         |                       |
| 4.387877   | 6.083711 | 27702.48 | 996         |                       |
| 4.388581   | 6.129212 | 27741.21 | 997         |                       |

#### PSA-3 (ACCELERATION) TEST




#### PSA-3 (ACCELERATION) TEST

| SNUBBER IDENTIFICATION | FIELD NAME          | ACCEPTANCE CRITERIA | FIELD NAME       |
|------------------------|---------------------|---------------------|------------------|
|                        | Component ID        | 0                   | BAW Drag %FL     |
| PSA 3 GINNA            | Туре                | 0                   | Peak Drag %FL    |
| 6                      | FL Kip              | 0                   | Average Drag %FL |
| 5                      | Stroke              | 0                   | Min Accel        |
| 45506                  | Serial Number       | 0.02                | Max Accel        |
| MSU-82                 | Hanger Number       | 0                   | Min Lockup       |
| TEST IDENTIFICATION    | 80                  | 0                   | Max Lockup       |
| ACCELERATION           | Test Type           | 0                   | Min Bleed        |
| FALSE                  | As Found?           | 0                   | Max Bleed        |
| GINNA STATION          | Test Site           | 80                  | Min Test Load    |
| TYLER ZABRUCKY         | Operator            | 100                 | Max Test Load    |
| 4/24/2023              | Date                |                     |                  |
| 11:37:34 AM            | Time                |                     |                  |
| 70                     | Temperature         |                     |                  |
| C93909255              | Work Request        |                     |                  |
|                        | <b>User Comment</b> |                     |                  |

#### PSA-3 (ACCELERATION) TEST

| MACHINE SETUP |                         | TEST RESULTS     | FIELD NAME               |
|---------------|-------------------------|------------------|--------------------------|
| CRITERIA      | FIELD NAME              | 4.828818         | Bottom Out Position      |
| 95            | Pressure Boost          | 9.328818         | Ext End Position         |
| 0             | Prop Gain               | 5.328818         | Retract End Position     |
| 0             | Int Gain                | 7.328818         | Center Stroke Position   |
| 0             | Ramp Rate               | <mark>500</mark> | Readings per second      |
| 0.5           | Test Duration           | 249              | Last Compression Reading |
| 0             | Lockup Limit            | 249              | Last Tension Reading     |
| 0             | Position Averaging      | 0                | Tension BAW              |
| 90            | Velocity Averaging      | 0                | Tension Average          |
| 80            | Force Averaging         | 0                | Comp BAW                 |
| 0             | Bench (0=small,1=large) | 0                | Comp Average             |
| 0.03          | Lost Motion Limit       | 0                | Comp Peak                |
| 250           | Lost Motion Threshold   | 1.30E-02         | Tension Accel            |
|               |                         | 0                | Tension Lockup           |
|               |                         | 0                | Tension BL               |
|               |                         | 5003.033         | Tension Load             |
|               |                         | -1.19E-02        | Comp Accel               |
|               |                         | 0                | Comp Lockup              |
|               |                         | 0                | Comp BL                  |
|               |                         | -4996.813        | Comp Load                |

#### PSA-3 (ACCELERATION) TEST



After achieving 50% of the Max Force selects the Minimum & Maximum Velocity Data Points to calculate the change in velocity over the change in time. This determines the slope of the velocity, and it is then converted to G's.

| TENSION DA | ATA      |          |       |               |           |
|------------|----------|----------|-------|---------------|-----------|
|            |          |          | Data  |               |           |
| Position   | Velocity | Force    | Point |               |           |
| 5.334712   | 3.65E-02 | 15.85128 | 1     |               |           |
| 5.335341   | 2.56E-02 | 15.85128 | 2     |               |           |
| 5.390723   | 104.3382 | 2284.628 | 18    |               |           |
| 5.405198   | 119.4075 | 2828.309 | 19    | 50% Max Force | 2501.5165 |
| 5.410861   | 129.0265 | 3263.254 | 20    |               |           |
| 5.442328   | 24.99755 | 5002.204 | 58    |               |           |
| 5.436035   | 22.56231 | 5002.37  | 59    |               |           |
| 5.432889   | 21.21647 | 5002.503 | 60    | Min Velocity  |           |
| 5.434147   | 22.09985 | 5002.609 | 61    |               |           |
| 5.444846   | 25.05159 | 5002.694 | 62    |               |           |
| 5.427854   | 28.7853  | 5002.762 | 63    |               |           |
| 5.947056   | 132.0109 | 5001.276 | 247   |               |           |
| 5.955238   | 132.826  | 5000.956 | 248   |               |           |
| 5.959013   | 133.8991 | 4998.503 | 249   |               |           |
| 5.941392   | 135.499  | 4995.747 | 250   | Max Velocity  |           |

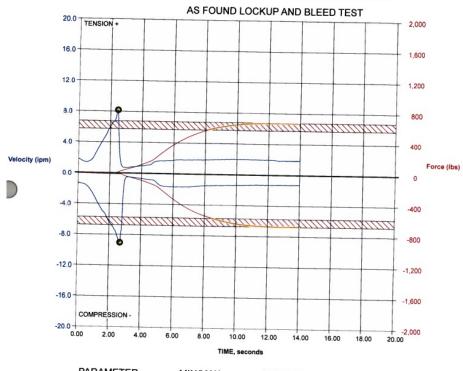
| Snubber Number = MSU-82                       |          |                      |
|-----------------------------------------------|----------|----------------------|
|                                               | Values   | Units                |
| Velocity at the low Point (A)                 | 21.22    | ipm                  |
| Velocity at the High Point B)                 | 135.5    | ipm                  |
| Change in Velocity                            | 114.28   | ipm                  |
|                                               |          |                      |
| Divided by 720 (convert ipm to ft/sec) = V    | 0.158722 | ft/sec               |
|                                               |          |                      |
| Time at Data Point (A)                        | 60       | 500 Readings per sec |
| Time at Point (B)                             | 250      | 500 Readings per sec |
| Change in Time = T                            | 0.38     | sec                  |
|                                               |          |                      |
| V divided by T = Acceleration or X            | 0.41769  | ft/sec/sec           |
|                                               |          |                      |
| X divided by 32.2 = Force Acceleration in g's | 0.013    | g's                  |

#### LISEGA 3018 (LOCKUP & BLEED) TEST

| SNUBBER             |               |
|---------------------|---------------|
| IDENTIFICATION      | FIELD NAME    |
| M1814               | Component ID  |
| LISEGA 3018         | Type          |
| 0.675               | FL Kip        |
| 4                   | Stroke        |
| 31200256-005        | Serial Number |
| DCA-237-E02-H00     | Hanger Number |
| TEST IDENTIFICATION |               |
| LOCKUP AND BLEED    | Test Type     |
| TRUE                | As Found?     |
| LIMERICK            | Test Site     |
| TEST OPERATOR       | Operator      |
| 5/6/2023            | Date          |
| 2:22:41 PM          | Time          |
| 72                  | Temperature   |
| 5283314-01          | Work Request  |
| AS FOUND LI2 R17    |               |
| TEMP 74.5           | User Comment  |

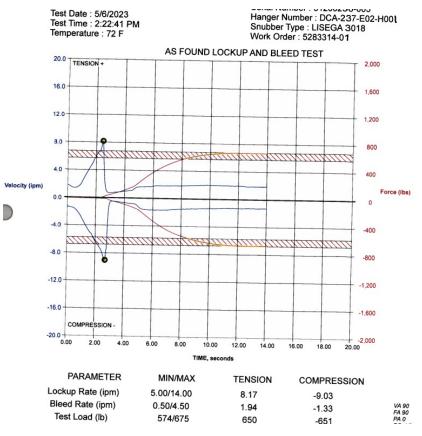
| ACCEPTANCE<br>CRITERIA | FIELD NAME       |
|------------------------|------------------|
| 3                      | BAW Drag %FL     |
| 3                      | Peak Drag %FL    |
| 3                      | Average Drag %FL |
| 0                      | Min Accel        |
| 0                      | Max Accel        |
| 5                      | Min Lockup       |
| 14                     | Max Lockup       |
| 0.5                    | Min Bleed        |
| 4.5                    | Max Bleed        |
| 85                     | Min Test Load    |
| 100                    | Max Test Load    |

# Raw Data File Acquisition & Analysis LISEGA 3018 (LOCKUP & BLEED) TEST


| MACHINE SETUP<br>CRITERIA | FIELD NAME              |
|---------------------------|-------------------------|
| 0                         | Pressure Boost          |
| 4.7                       | Prop Gain               |
| 1                         | Int Gain                |
| 4                         | Ramp Rate               |
| 14                        | Test Duration           |
| 25                        | Lockup Limit            |
| 0                         | Position Averaging      |
| 90                        | Velocity Averaging      |
| 90                        | Force Averaging         |
| 0                         | Bench (0=small,1=large) |
| 0                         | Lost Motion Limit       |
| 0                         | Lost Motion Threshold   |

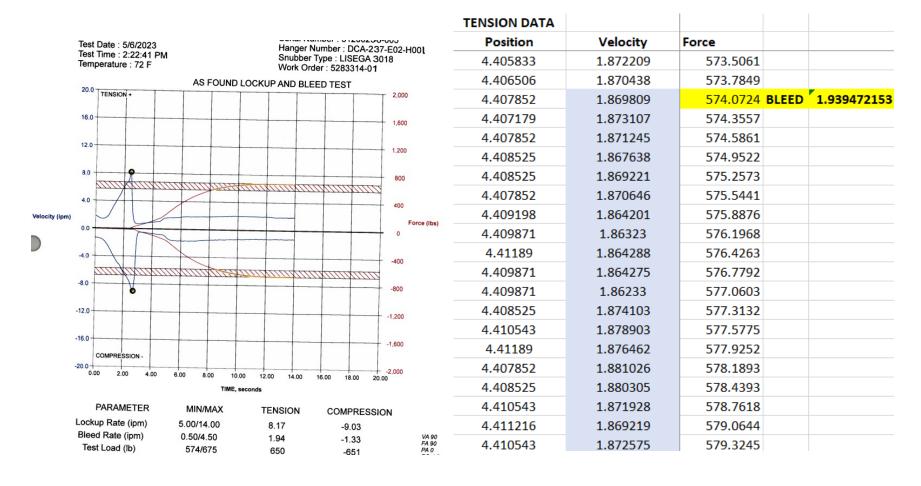
| TEST RESULTS | FIELD NAME               |  |
|--------------|--------------------------|--|
| 1.206783     | Bottom Out Position      |  |
| 4.706783     | Ext End Position         |  |
| 1.706783     | Retract End Position     |  |
| 3.206783     | Center Stroke Position   |  |
| 200          | Readings per second      |  |
| 2798         | Last Compression Reading |  |
| 2798         | Last Tension Reading     |  |
| 2.646681     | Tension BAW              |  |
| 2.955233     | Tension Average          |  |
| -7.822392    | Tension Peak             |  |
| -9.000793    | Comp BAW                 |  |
| -6.852929    | Comp Average             |  |
| 0            | Tension Accel            |  |
| 8.166509     | Tension Lockup           |  |
| 1.939414     | Tension BL               |  |
| 649.6263     | Tension Load             |  |
| 0            | Comp Accel               |  |
| -9.026915    | Comp Lockup              |  |
| -1.328656    | Comp BL                  |  |
| -651.2868    | Comp Load                |  |

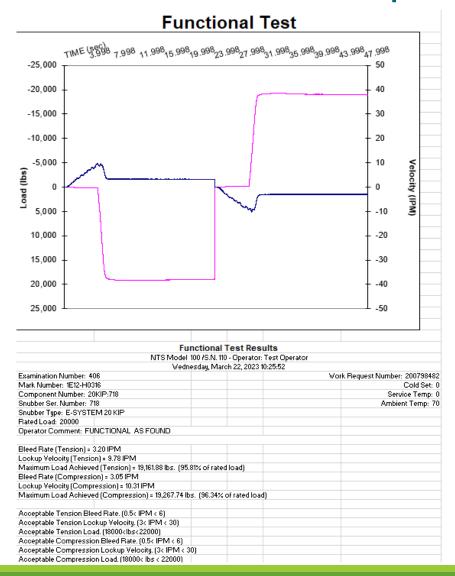
# Raw Data File Acquisition & Analysis LISEGA 3018 (LOCKUP & BLEED) TEST


Test Date : 5/6/2023 Hanger Nu
Test Time : 2:22:41 PM Snubber Ty
Temperature : 72 F Work Orde

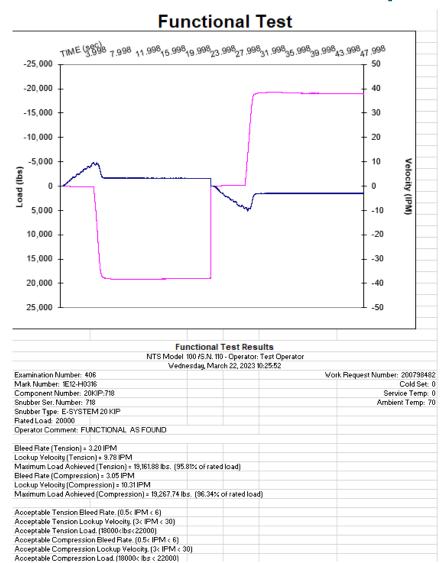
Hanger Number : DCA-237-E02-H001 Snubber Type : LISEGA 3018 Work Order : 5283314-01




| PARAMETER         | MIN/MAX    | TENSION | COMPRESSION |               |
|-------------------|------------|---------|-------------|---------------|
| Lockup Rate (ipm) | 5.00/14.00 | 8.17    | -9.03       |               |
| Bleed Rate (ipm)  | 0.50/4.50  | 1.94    | -1.33       | VA 90         |
| Test Load (lb)    | 574/675    | 650     | -651        | FA 90<br>PA 0 |

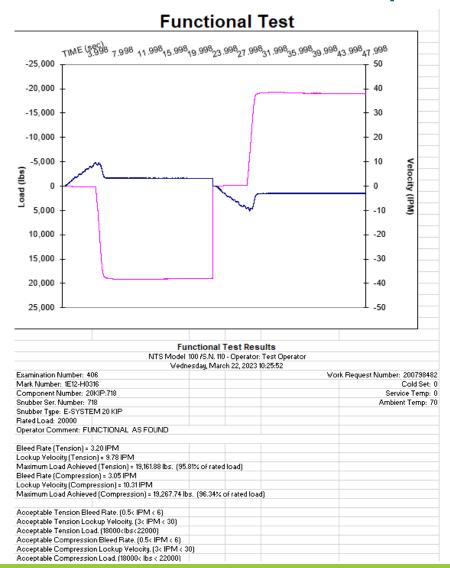

## Raw Data File Acquisition & Analysis LISEGA 3018 (LOCKUP & BLEED) TEST




| TENSION DATA |          |          |                    |
|--------------|----------|----------|--------------------|
| Position     | Velocity | Force    |                    |
| 4.254423     | 7.392452 | 4.325564 |                    |
| 4.256442     | 7.4404   | 4.320253 |                    |
| 4.253077     | 7.498042 | 4.339888 |                    |
| 4.257114     | 7.559578 | 4.369766 |                    |
| 4.260479     | 7.622687 | 4.408864 |                    |
| 4.261152     | 7.689145 | 4.419638 |                    |
| 4.259133     | 7.747991 | 4.429334 |                    |
| 4.259133     | 7.799986 | 4.474682 |                    |
| 4.259133     | 7.846782 | 4.491081 |                    |
| 4.261152     | 7.896625 | 4.518047 |                    |
| 4.261825     | 7.94245  | 4.554523 |                    |
| 4.259806     | 7.981761 | 4.575145 |                    |
| 4.262498     | 8.020038 | 4.605912 |                    |
| 4.263844     | 8.049658 | 4.633602 |                    |
| 4.264517     | 8.080179 | 4.621902 |                    |
| 4.26519      | 8.112478 | 4.672407 |                    |
| 4.263171     | 8.139615 | 4.778897 |                    |
| 4.266535     | 8.156311 | 4.801496 |                    |
| 4.269227     | 8.166509 | 4.846248 | MAX VELOCITY POINT |

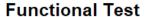
#### LISEGA 3018 (LOCKUP & BLEED) TEST

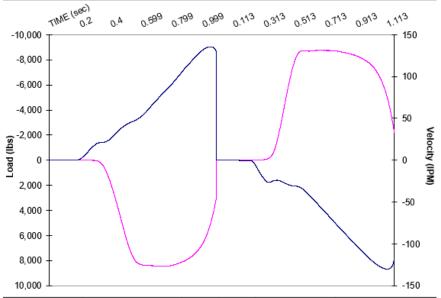





E-SYSTEMS
20 KIP
(LOCKUP & BLEED) TEST




E-SYSTEMS 20 KIP (LOCKUP) TEST
Program searches for the highest velocity
point

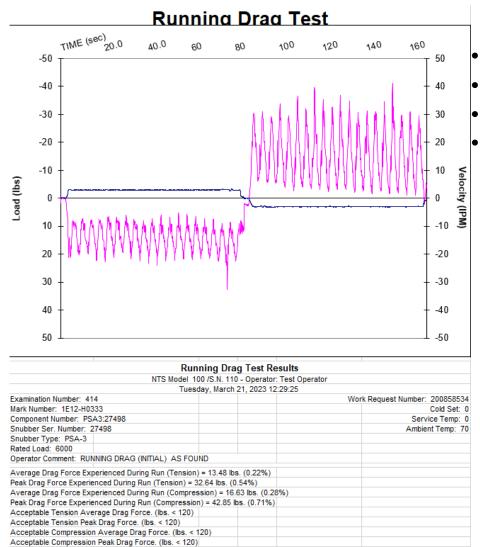

| TIME (sec) | VELOCITY (ipm) | LOAD (lbs) |              |
|------------|----------------|------------|--------------|
| 5.28       | 9.660          | 219.632    |              |
| 5.282      | 9.680          | 219.632    |              |
| 5.284      | 9.639          | 218.052    |              |
| 5.286      | 9.660          | 218.052    |              |
| 5.288      | 9.639          | 219.632    |              |
| 5.29       | 9.700          | 218.052    |              |
| 5.292      | 9.700          | 219.632    |              |
| 5.294      | 9.781          | 221.212    | MAX VELOCITY |
| 5.296      | 9.660          | 219.632    |              |
| 5.298      | 9.741          | 221.212    |              |
| 5.3        | 9.700          | 224.372    |              |
| 5.302      | 9.700          | 219.632    |              |
| 5.304      | 9.680          | 221.212    |              |
| 5.306      | 9.660          | 222.792    |              |
| 5.308      | 9.660          | 219.632    |              |
| 5.31       | 9.700          | 222.792    |              |
| 5.312      | 9.639          | 222.792    |              |
| 5.314      | 9.720          | 224.372    |              |
| 5.316      | 9.639          | 225.952    |              |
| 5.318      | 9.700          | 230.691    |              |



E-SYSTEMS 20 KIP (LOCKUP) TEST
Program averages VELOCITY data points
equal to or greater than 18,000lbs and less
than or equal to 22,000lbs

| TIME (sec) | VELOCITY (ipm) | LOAD (lbs) |          |       |
|------------|----------------|------------|----------|-------|
| 6.498      | 4.925          | 17967.440  |          |       |
| 6.5        | 4.885          | 17980.079  |          |       |
| 6.502      | 4.844          | 17992.719  |          |       |
| 6.504      | 4.905          | 18003.779  | AVERAGE  | 3.198 |
| 6.506      | 4.844          | 18016.419  |          |       |
| 6.508      | 4.844          | 18025.898  |          |       |
| 6.51       | 4.804          | 18035.378  |          |       |
| 6.512      | 4.783          | 18043.278  |          |       |
| 6.514      | 4.783          | 18054.338  |          |       |
| 6.516      | 4.783          | 18070.138  |          |       |
| 6.518      | 4.763          | 18081.197  |          |       |
| 6.52       | 4.661          | 18090.677  |          |       |
| 6.522      | 4.763          | 18103.317  |          |       |
| 6.524      | 4.702          | 18111.217  |          |       |
| 6.526      | 4.682          | 18120.697  |          |       |
| 6.528      | 4.661          | 18136.496  |          |       |
| 6.53       | 4.621          | 18141.236  |          |       |
| 6.532      | 4.641          | 18150.716  |          |       |
| 6.534      | 4.661          | 18161.776  |          |       |
| 9.126      | 3.178          | 19158.737  |          |       |
| 9.128      | 3.117          | 19160.317  |          |       |
| 9.13       | 3.239          | 19155.577  |          |       |
| 9.132      | 3.198          | 19161.897  | MAX LOAD |       |
| 9.134      | 3.178          | 19161.897  |          |       |
| 24.09      | 3.137          | 18910.682  |          |       |
| 24.092     | 3.097          | 18910.682  |          |       |
| 24.094     | 3.077          | 18912.262  |          |       |
| 24.096     | 3.137          | 18909.102  |          |       |
| 24.098     | 3.077          | 18909.102  |          |       |
| 24.1       | 3.117          | 18912.262  |          |       |






| Functional 1                                                        | est Results                  |
|---------------------------------------------------------------------|------------------------------|
| Wyle Model 150 /S.N. 116                                            | - Operator: Test Operator    |
| Thursday, July 0                                                    | 6, 2023 12:39:56             |
| Examination Number: MJF-377                                         | Work Request Number: 7451580 |
| Mark Number: N/A                                                    | Cold Set: (                  |
| Component Number: MJF377                                            | Service Temp: (              |
| Snubber Ser, Number: 10643                                          | Ambient Temp: 70.7           |
| Snubber Type: PSA-10                                                |                              |
| Rated Load: 15000                                                   |                              |
| Operator Comment: FUNCTIONAL AS LEFT                                |                              |
|                                                                     |                              |
| Limiting Acceleration (Tension) = 0.0071 g's                        |                              |
| Maximum Load Achieved (Tension) = 8,475.92 lbs. (56.51% of rated to | pad)                         |
| Limiting Acceleration (Compression) = 0.0062 g's                    |                              |
| Maximum Load Achieved (Compression) = 8,762.30 lbs. (58.42% of r    | ated load)                   |
|                                                                     |                              |
| Acceptable Tension Limiting Acceleration. (0< 0.02)                 |                              |
| Acceptable Tension Load. (7500< 10500)                              |                              |
| Acceptable Compression Limiting Acceleration. (0< 0.02)             |                              |
| Acceptable Compression Load (7500x 10500)                           |                              |

#### PSA-10 (Acceleration) TEST

Program selects the highest velocity data point and finds the velocity data point 200 milliseconds prior to calculate the change in velocity over the change in time. This determines the slope of the velocity, and it is then converted to G's.

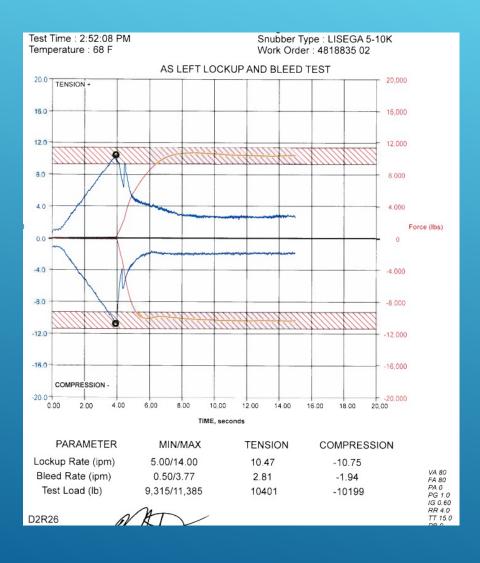
| TIME (sec) | VELOCITY (ipm | LOAD (lbs) |              |
|------------|---------------|------------|--------------|
| 0.845      | 100.992       | 8206.103   |              |
| 0.846      | 101.219       | 8197.967   |              |
| 0.847      | 101.466       | 8201.222   |              |
| 0.848      | 101.734       | 8197.967   |              |
| 0.849      | 101.899       | 8194.713   |              |
| 0.85       | 102.167       | 8180.068   |              |
| 0.851      | 102.352       | 8175.187   |              |
| 0.852      | 102.620       | 8176.814   | 200 MS PRIOR |
| 0.853      | 102.867       | 8171.932   | MAX VELOCITY |
| 0.854      | 103.012       | 8167.051   |              |
| 0.855      | 103.218       | 8163.797   |              |
| 0.856      | 103.486       | 8155.661   |              |
| 1.047      | 135.610       | 5228.384   |              |
| 1.048      | 135.610       | 5182.824   |              |
| 1.049      | 135.589       | 5145.399   |              |
| 1.05       | 135.548       | 5104.719   |              |
| 1.051      | 135.568       | 5064.040   |              |
| 1.052      | 135.630       | 5024.988   | MAX VELOCITY |
| 1.053      | 135.568       | 4981.055   |              |
| 1.054      | 135.568       | 4940.375   |              |
| 1.055      | 135.568       | 4886.679   |              |
| 1.056      | 135.548       | 4844.372   |              |
| 1.057      | 135.568       | 4802.066   |              |



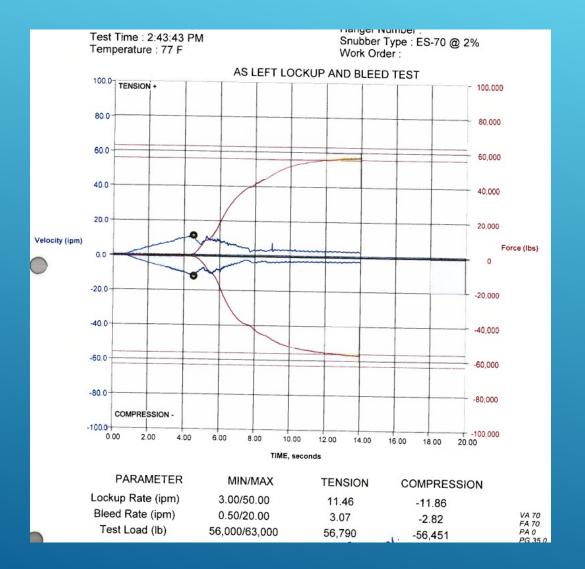
PSA-3 (DRAG) TEST

- Records the PEAK load value (PINK)
- Averages load data points (PINK)
- Records the velocity (BLUE)
  - Load results may not match load values in the raw data due to tare value adjustment

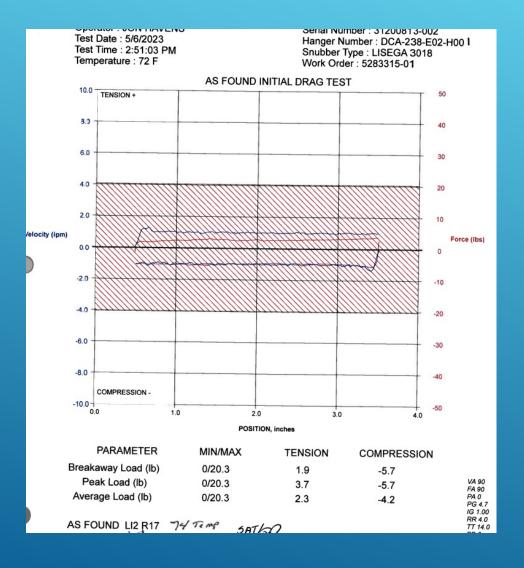
| TIME (sec) | VELOCITY (ipm | LOAD (Ibs) |                 |
|------------|---------------|------------|-----------------|
| 75.7       | 3.117         | 22.885     |                 |
| 75.8       | 3.117         | 23.037     |                 |
| 75.9       | 3.139         | 20.597     |                 |
| 76         | 3.182         | 19.987     |                 |
| 76.1       | 3.139         | 22.885     |                 |
| 76.2       | 3.203         | 24.105     |                 |
| 76.3       | 3.139         | 22.732     |                 |
| 76.4       | 3.052         | 28.070     |                 |
| 76.5       | 3.031         |            | PEAK DRAG VALUE |
| 76.6       | 3.160         | 20.750     |                 |
| 76.7       | 3.160         | 16.632     |                 |
| 76.8       | 3.117         | 18.157     |                 |
| 76.9       | 3.160         | 19.987     |                 |
| 77         | 3.139         | 16.784     |                 |
| 77.1       | 3.117         | 14.954     |                 |
| 77.2       | 3.031         | 13.277     |                 |
| 77.3       | 2.988         | 12.057     |                 |
| 77.4       | 2.815         | 11.752     |                 |
| 77.5       | 2.643         | 10.837     |                 |
| 77.6       |               | 12.362     |                 |
| 77.7       | 2.643         | 10.379     |                 |
| 77.8       |               | 8.549      |                 |
| 77.9       | 2.643         | 8.854      |                 |


### **QUESTIONS?**

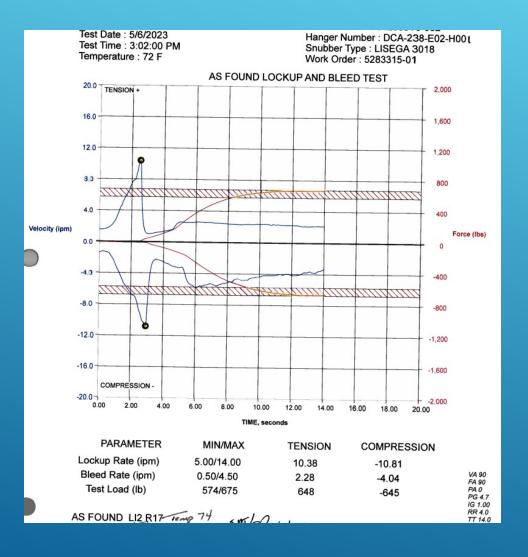
#### **UNUSUAL TEST PLOTS**


Scott Esposito

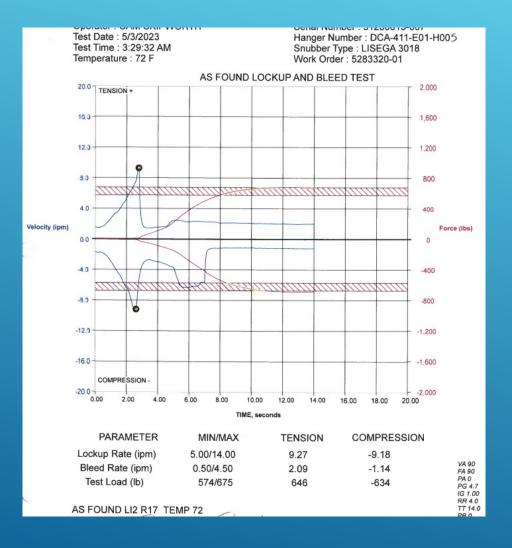
2023 SUMMER SNUG – Tucson, AZ


### HYDRAULIC SNUBBERS

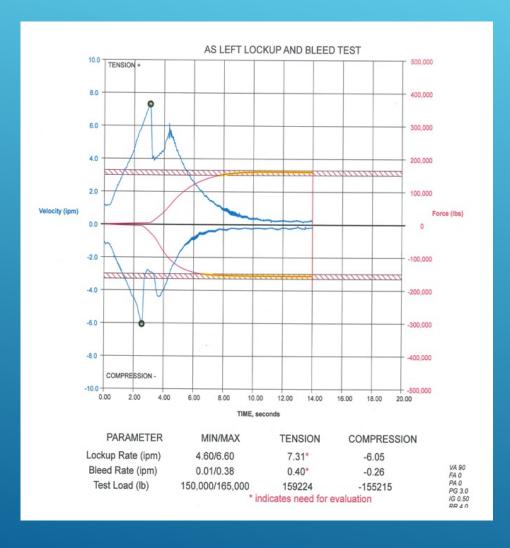



# Good Lockup & Bleed Test - Lisega




# Good Lockup & Bleed Test - Lisega

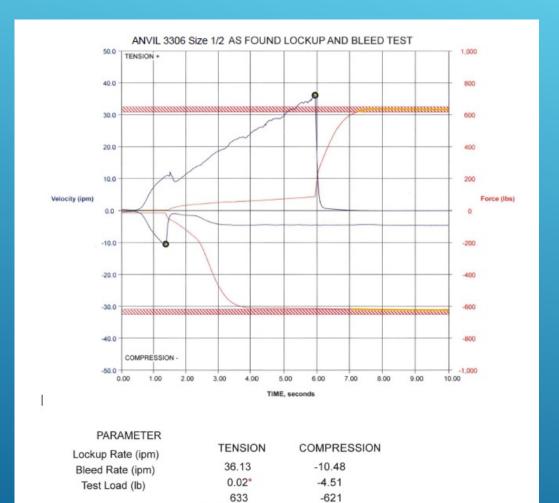



## Good Drag Test - Lisega

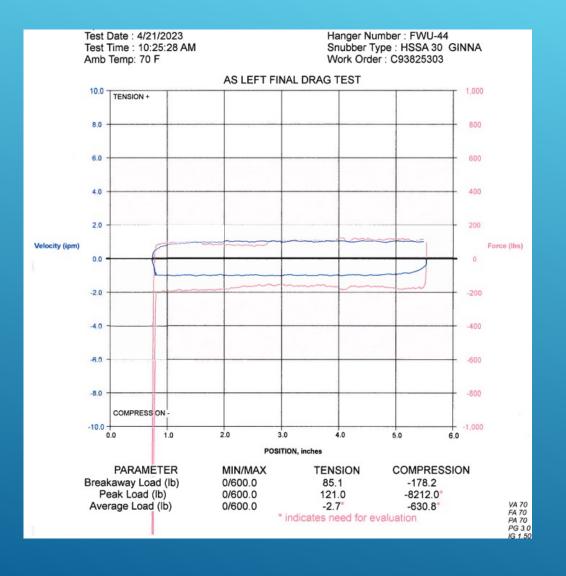


#### Unusual Plot -Lisega

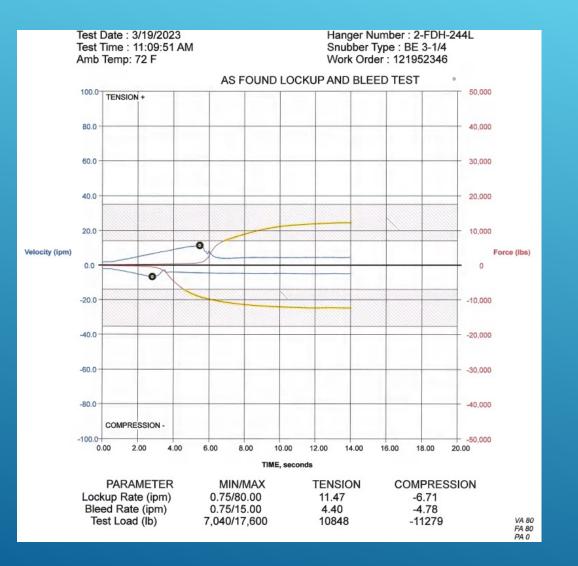



### Unusual Plot -Lisega

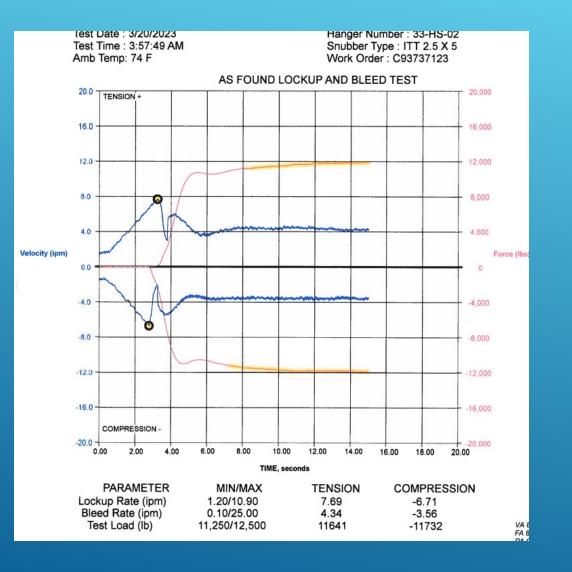



#### Outside Acceptance Range - Lisega

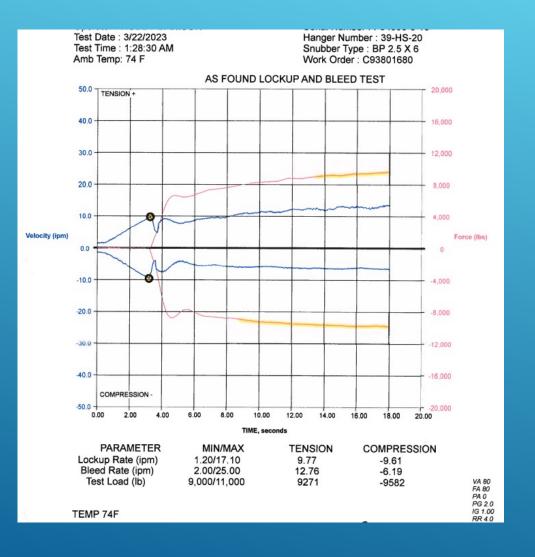



#### Outside Acceptance Range - Lisega

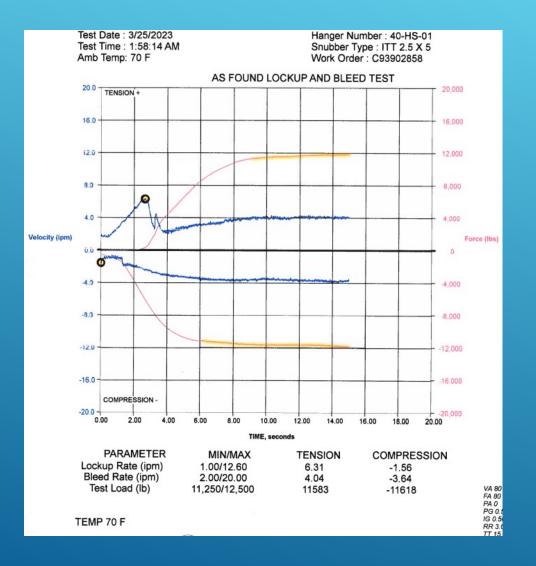



#### Outside Acceptance Range - ASC 3306

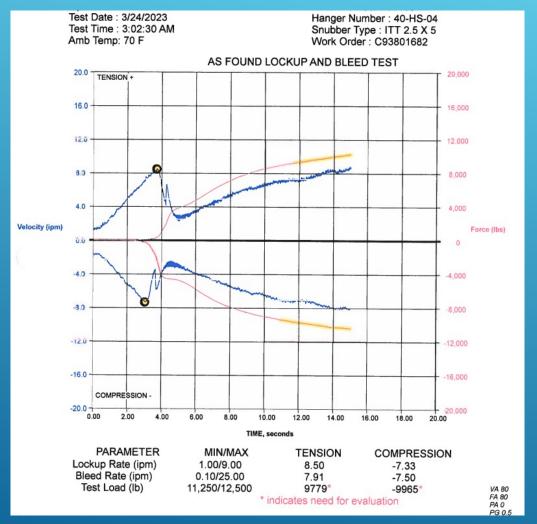



#### Unusual Plot – Bergen-Paterson



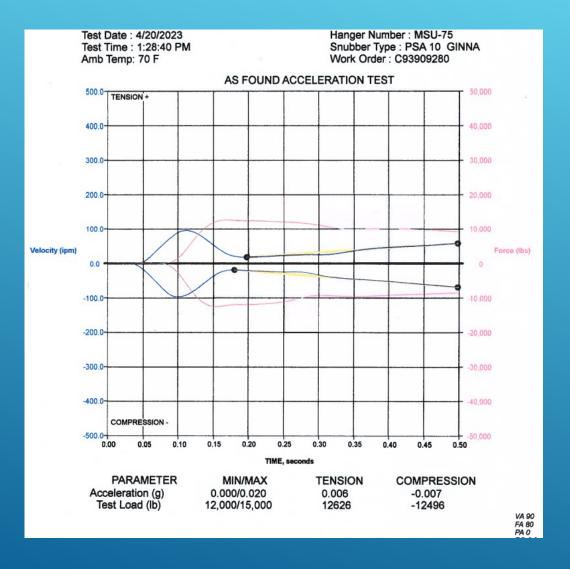

# Good Lockup & Bleed Test – Basic Eng.



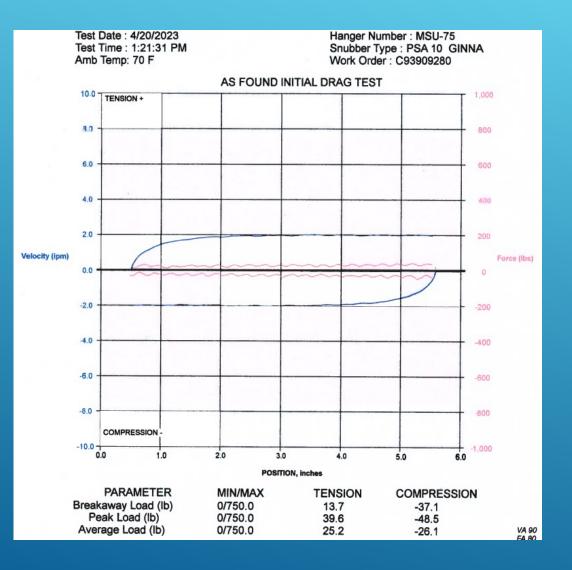

# Good Lockup & Bleed Test – ITT Grinnell Fig-200



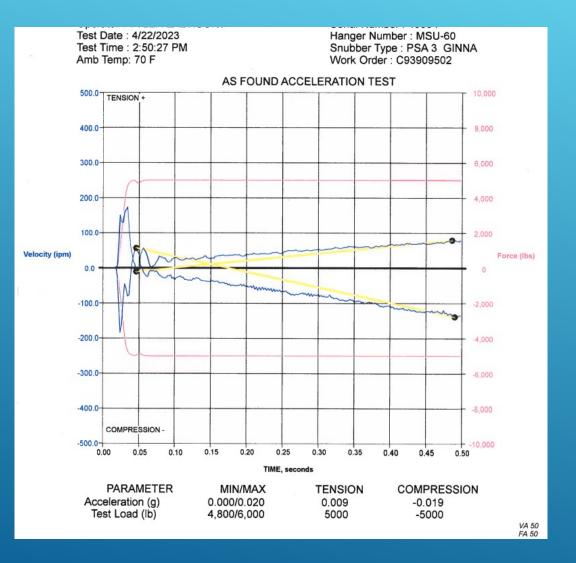
#### Unusual Plot – Bergen-Paterson

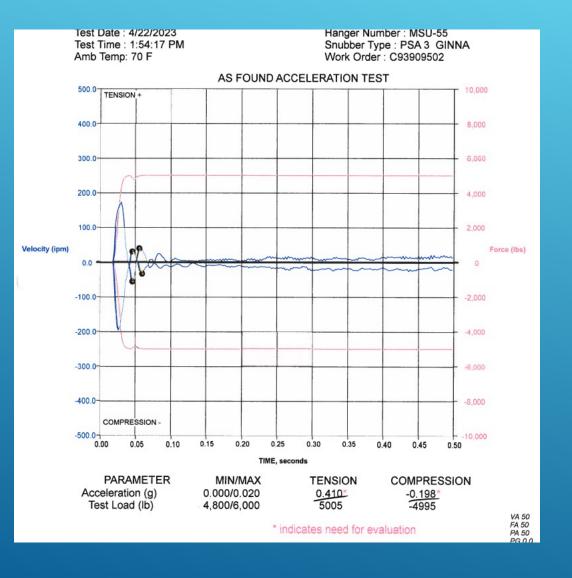


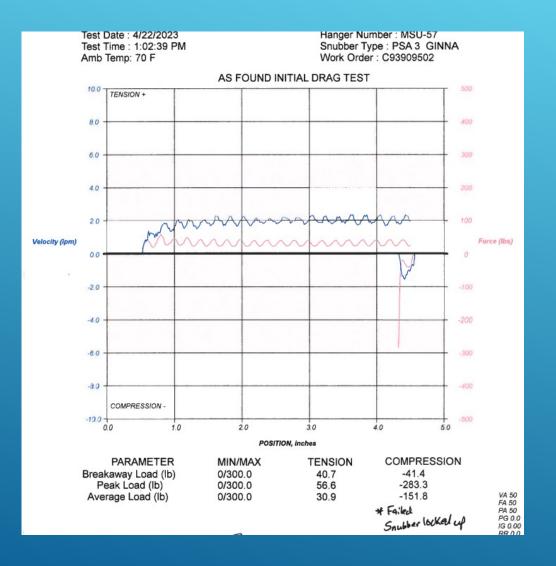

#### Unusual Plot – ITT Grinnell Fig-200

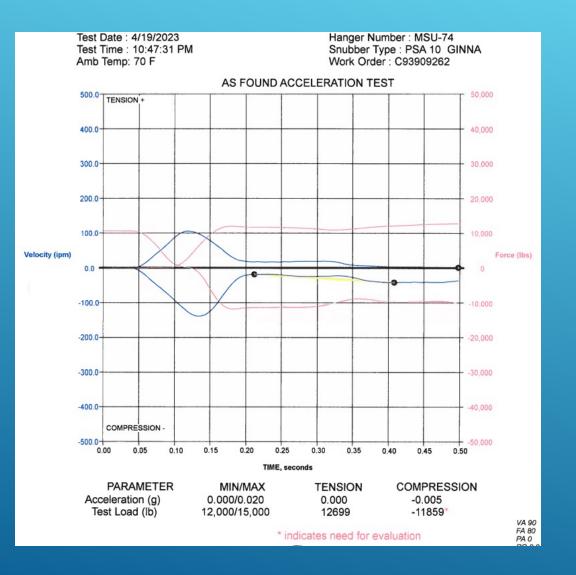


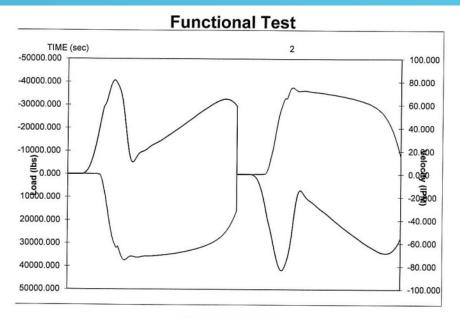

#### Unusual Plot – ITT Grinnell Fig-200


## MECHANICAL SNUBBERS





#### Good Acceleration Test - PSA





## Good Drag Test - PSA











#### **Functional Test Results**

Wyle Model 150 /S.N. 119 - Operator: Benny Reid BR 3 - 3 - 23 Friday, March 03, 2023 08:57:38

Work Request Number: 122039342

Cold Set: 0

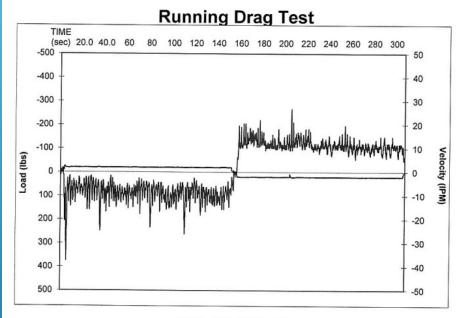
Service Temp: 0

Ambient Temp: 71

Examination Number: 200195 Mark Number: 2-SNUB-003-5023 Component Number: M-1122-1 Snubber Ser. Number: 42417 Snubber Type: PSA-35 Rated Load: 50000

Operator Comment: FUNCTIONAL AS FOUND

Limiting Acceleration (Tension) = 0.0021 g's


Maximum Load Achieved (Tension) = 37,428.87 lbs. (74.86% of rated load)

Limiting Acceleration (Compression) = 0.0021 g's

Maximum Load Achieved (Compression) = 37,575,04 lbs. (75.15% of rated load)

Acceptable Tension Limiting Acceleration. (0< 0.04)
Acceptable Tension Load. (30000< 45000)
Acceptable Compression Limiting Acceleration. (0< 0.04)
Acceptable Compression Load. (30000< 45000)

#### Good Acceleration Test - PSA



#### Running Drag Test Results

Wyle Model 150 /S.N. 119 - Operator: Benny Reid BR 3-3-23
Friday, March 03, 2023 09:05:55

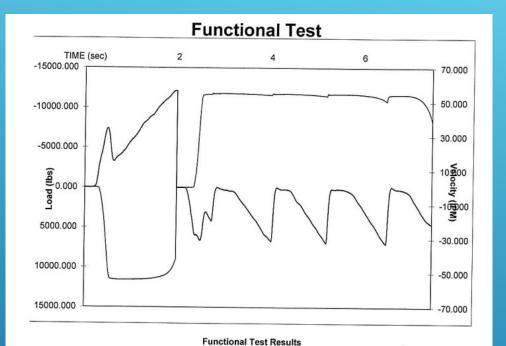
Work Request Number: 122039342

Cold Set: 0

Service Temp: 0

Ambient Temp: 71

Examination Number: 200195
Mark Number: 2-SNUB-003-5023
Component Number: M-1122-1


Component Number: M-1122-1 Snubber Ser. Number: 42417 Snubber Type: PSA-35

Rated Load: 50000

Operator Comment: RUNNING DRAG (FINAL) AS FOUND

Average Drag Force Experienced During Run (Tension) = 84.16 lbs. (0.17%)
Peak Drag Force Experienced During Run (Tension) = 372.50 lbs. (0.74%)
Average Drag Force Experienced During Run (Compression) = 114.52 lbs. (0.23%)
Peak Drag Force Experienced During Run (Compression) = 268.76 lbs. (0.54%)
Acceptable Tension Average Drag Force. (lbs. < 2500)
Acceptable Tension Peak Drag Force. (lbs. < 2500)
Acceptable Compression Average Drag Force. (lbs. < 2500)
Acceptable Compression Peak Drag Force. (lbs. < 2500)

## Good Drag Test - PSA



Wednesday, October 05, 2022 14:42:28

Wyle Model 150 /S.N. 119 - Operator: Benny Reid R& 10-5-22

Work Request Number: 121745876

Cold Set: 0

Service Temp: 0

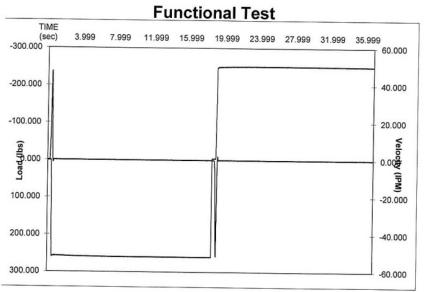
Ambient Temp: 71

#### Outside Acceleration Acceptance Range - PSA

Examination Number: 100145 Mark Number: 1-SNUB-010-5052 Component Number: M-1204-1

Component Number: M-1204-1 Snubber Ser. Number: 42605 Snubber Type: PSA-10 Rated Load: 15000

Operator Comment: FUNCTIONAL AS FOUND


Limiting Acceleration (Tension) = 0.0012 g's

Maximum Load Achieved (Tension) = 11,608.85 lbs. (77.39% of rated load)

Limiting Acceleration (Compression) = 0.0017 g's

Maximum Load Achieved (Compression) = 11,839.10 lbs. (78.93% of rated load)

Acceptable Tension Limiting Acceleration. (0< 0.04) Acceptable Tension Load. (9000< 13500) Acceptable Compression Limiting Acceleration. (0< 0.04) Acceptable Compression Load. (9000< 13500)



#### Functional Test Results

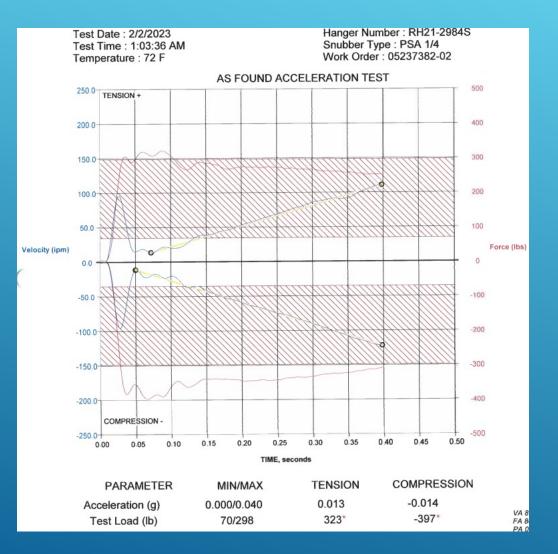
Wyle Model 150 /S.N. 119 - Operator: Benny Reid BR 3 - 6 - 23 Monday, March 06, 2023 12:52:08

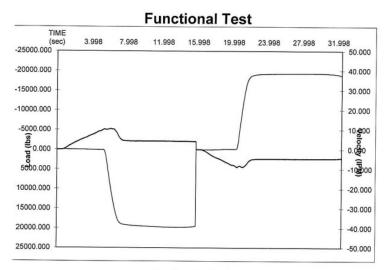
Work Request Number: 123513891

Cold Set: 0

Service Temp: 0

Ambient Temp: 72


Examination Number: 200278 Mark Number: 2-SNUB-001-5065 Component Number: M-1102-1 Snubber Ser. Number: 6666 Snubber Type: PSA-1/4 Rated Load: 350


Operator Comment: FUNCTIONAL AS FOUND

Limiting Acceleration (Tension) = 0.0000 g's
Maximum Load Achieved (Tension) = 260.85 lbs. (74.53% of rated load)
Limiting Acceleration (Compression) = 0.0000 g's
Maximum Load Achieved (Compression) = 248.10 lbs. (70.89% of rated load)

Acceptable Tension Limiting Acceleration. (0< 0.04) Acceptable Tension Load. (210< 315) Acceptable Compression Limiting Acceleration. (0< 0.04) Acceptable Compression Load. (210< 315)

#### Outside Acceleration Acceptance Range - PSA





#### **Functional Test Results**

Wyle Model 150 /S.N. 119 - Operator: Benny Reid BR2-2-25-23 Saturday, February 25, 2023 08:57:28

Work Request Number: 122039315

Cold Set: 0

Service Temp: 0

Ambient Temp: 71

Examination Number: 200184 Mark Number: 2-SNUB-074-5037 Component Number: H-4071 Snubber Ser. Number: ADH-2000-1591

Snubber Type: ADH-20 Rated Load: 20000

Operator Comment: FUNCTIONAL AS FOUND

Bleed Rate (Tension) = 4.33 IPM

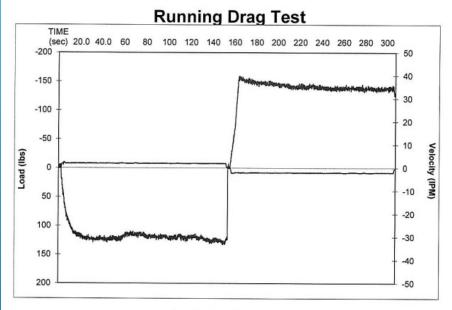
Lockup Velocity (Tension) = 10.55 IPM

Maximum Load Achieved (Tension) = 19,834.17 lbs. (99.17% of rated load)

Bleed Rate (Compression) = 4.65 IPM Lockup Velocity (Compression) = 9.00 IPM

Maximum Load Achieved (Compression) = 19,406.33 lbs. (97.03% of rated load)

Acceptable Tension Bleed Rate. (2< IPM < 10)
Acceptable Tension Lockup Velocity. (1< IPM < 30)


Acceptable Tension Load. (18000<lbs<20000) Acceptable Compression Bleed Rate. (2< IPM < 10)

Acceptable Compression Bleed Rate. (2< IPM < 10)
Acceptable Compression Lockup Velocity. (1< IPM < 30)

Acceptable Compression Load. (18000< lbs < 20000)

Test Status (Tension/Compression): ACCEPTABLE/ACCEPTABLE

# Good Acceleration Test – Anchor Darling



#### **Running Drag Test Results**

Wyle Model 150 /S.N. 119 - Operator: Benny Reid BR 2-25-23 Saturday, February 25, 2023 09:04:51

Work Request Number: 122039315

Cold Set: 0

Service Temp: 0

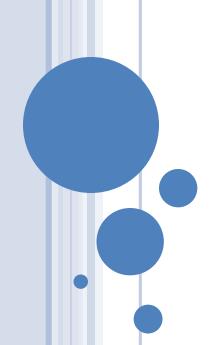
Ambient Temp: 71

Examination Number: 200184 Mark Number: 2-SNUB-074-5037 Component Number: H-4071 Snubber Ser. Number: ADH-2000-1591 Snubber Type: ADH-20 Rated Load: 20000

Operator Comment: RUNNING DRAG (FINAL) AS FOUND

Average Drag Force Experienced During Run (Tension) = 118.66 lbs. (0.59%) Peak Drag Force Experienced During Run (Tension) = 135.54 lbs. (0.68%) Average Drag Force Experienced During Run (Compression) = 134.89 lbs. (0.67%) Peak Drag Force Experienced During Run (Compression) = 158.40 lbs. (0.79%) Acceptable Tension Average Drag Force. (lbs. < 800) Acceptable Tension Peak Drag Force. (lbs. < 800) Acceptable Compression Average Drag Force. (lbs. < 800) Acceptable Compression Peak Drag Force. (lbs. < 800)

## Good Drag Test **Anchor Darling**


# CONCLUSION to Unusual Test Plots



## SNUBBER USERS GROUP, INC. 2023 BUSINESS MEETING



President & Chairman of BOD



## ROLL CALL

**SUMMER 2023** 

### **Current Active Member Plants**

Up to four candidates may be voted for.

One ballot per Member Site.

Top four elected regardless of number of votes.

#### **CURRENT ACTIVE MEMBER PLANTS**

SŅĻG

- Arkansas Nuclear One
- Braidwood
- Browns Ferry
- Brunswick
- Byron
- Callaway
- Calvert Cliffs
- Catawba
- Cernavoda
- Clinton
- Columbia
- Comanche Peak
- Cook
- Cooper
- Davis-Besse
- Diablo Canyon
- Dresden
- Farley

- Fermi
- FitzPatrick
- Ginna
- Grand Gulf
- Harris
- Hatch
- Hope Creek
- Krsko
- LaSalle
- Limerick
- McGuire
- Millstone
- Monticello
- Nine Mile
- North Anna
- Oconee
- Palo Verde
- Peach Bottom
- Perry

- Point Beach
- Prairie Island
- Quad Cities
- River Bend
- Robinson
- Salem
- Seabrook
- Sequoyah
- South Texas
- St. Lucie
- Summer
- Susquehanna
- Vogtle
- Watts Bar
- Wolf Creek

### **Current SNUG Board of Directors**

Terms Scott Esposito

expiring Bob Fandetti

2023 Stephanie McCormick

Joe Pawasarat (resigned, slot open)

Terms Tim Canter

expiring John Catano

Nate Frank

**Steve Norman** 

Terms Ed Dundon

expiring Mitch Etten-Bohm

2025 Mario Mazzuca

Marissa Post (resigned, slot open)

# INTRODUCTION OF NOMINEES Mitch Etten-Bohm

**President & Chairman of BOD** 

2023 - 2026 Terms

### **SNUG Board of Directors Nominees**

- Gus Avila
- Scott Esposito
- Bob Fandetti
- Stephanie McCormick

Up to four candidates may be voted for.

One ballot per Member Site.

Top four elected regardless of number of votes.

## ELECTION OF DIRECTORS

# SNUBBER USERS GROUP Current Financial Status

Presented by Steve Norman SNUG Treasurer & Chief Financial Officer

Summer 2023 Conference & Trade Show July 17, 2023

## Status as of January 1, 2023

- Account Balances
  - Checking Account
  - Money Market Account

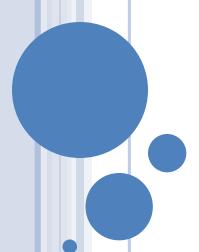
- \$ 10,318.84
- \$ 25,696.27

Total

\$ 36,015.11

## Year to Date Income

| CATEGORY                        | <b>EXPECTED</b> | ACTUAL      |
|---------------------------------|-----------------|-------------|
| 2023 Membership Fees            | \$ 43,200.00    | \$16,200.00 |
| 2022 Membership Fees            | \$ 0.00         | \$ 7,800.00 |
| Vendor Website Advertising Fees | \$ 3,500.00     | \$ 3,000.00 |
| Interest Earned                 | \$ 0.00         | \$ 15.96    |


Total \$ 46,700.00 \$30,015.96

## **Current Status**

| Beginning Balance | \$<br>36,015.11 |
|-------------------|-----------------|
| Expenditures      | \$<br>3,757.33  |
| Income            | \$<br>30,015.96 |
| Current Total     | \$<br>62,273.74 |

# SNUBBER USERS GROUP Current Financial Status





## **ELECTION RESULTS**

## **ELECTION RESULTS**

Your New Directors for 2023 - 2026 are:

- Gus Avila
- Scott Esposito
- Bob Fandetti
- Stephanie McCormick

ADJOURN
SNUBBER USERS GROUP, INC.
2023 BUSINESS MEETING

Mitch Etten-Bohm

**President & Chairman of BOD** 



#### DAILY ADJOURNMENT

#### Busses Leave for Top Golf @ 5:15 PM

#### DON'T BE LATE

TUESDAY'S SESSION BEGINS 8:00 AM



#### DAILY ADJOURNMENT

## TUESDAY'S SESSION BEGINS 8:00 AM

ALL ATTENDEES SHOULD REPORT TO THE MAIN MEETING ROOM TO BEGIN THE SESSIONS FOR THE DAY ON TUESDAY.